

MME: PP-GF for structural applications Challenges and solutions

Klaus Klemm, Basell Deutschland GmbH

June 18th, 2019

Company confidential

1

MME: PP-GF for structural applications, Challenges and solutions Agenda

- Challenges for structures / structural applications
- LyondellBasell scouting initiatives (overview)
- Evaluation of different options with PP Compounds
 - (Foaming)
 - Polymers
 - Fibers
- Long term mechanical material performance
 - Impact of exposure to coolant or heat
 - Lifetime expectation due to permanent load
 - Conventional PP resins vs. Advanced Copo resins SGF / LGF
- Conclusion

2

MME: PP-GF for structural applications, Challenges and solutions Challenges for structures / structural applications

Fuel / emission reduction

- weight of all cars have to be reduced
 - Plastics will replace metal, e.g. HT engineering plastics for powertrains or PPC for structures (liftgate)
 - Plastic parts with lower density shall be implemented
- (Implementation of Hybrid powertrain solutions)
- Full electric vehicles
 - New electric components (High voltage environment)
 - Lower noise level
- Recycling
- Reliability/ robustness to increase sustainability
- •

MME: PP-GF for structural applications, Challenges and solutions PPC themes and initiatives

MME: PP-GF for structural applications, Challenges and solutions Foaming (PAD activity of Dieter Langenfelder)

Impact of foaming to mechanical properties:

- Impact performance: first positive (thickness) then negative (delamination) •
- Negative effect to modulus and strength
- Positive to flexural stiffness

50000 2 5 4,5 3 5 Compact 2 mm

MME: PP-GF for structural applications, Challenges and solutions Comprehensive set of solutions for structural applications

MME: PP-GF for structural applications, Challenges and solutions Material evaluation – Polymers (PAD activity of Sven Nietzel)

			Reference: 30% SGF		
		Base resin	HOMO-PP (LE)	Advanced Copo	Catalloy
Property	Method	Unit	HRG 328T BLACK	EKG 2058T BLACK	DKG 2067T BLACK
Tensile modulus, 23°C	ISO 527-2/1A	MPa	6800	6700	5000
Tensile strength, 23°C	ISO 527-2/1A	MPA	95	95	52
acU, 23°C acN, 23°C/-30°C	ISO 179/1eU ISO 179/1eA	kJ/m ²	45 9,5/7	55 11/9	60 16/9
Flowability			++	+	+
Emissions	Indic	ation	+(+)	+(+)	0
Shrinkage (transv./long.)			3/1	3/1	2/1

MME: PP-GF for structural applications, Challenges and solutions Evaluation result of different fibers (PAD activity of Mikhail Dureev)

due to substantial influence of the fiber length to the PPC property profile

- Advanced Copo
- Moplen LE"

MME: PP-GF for structural applications, Challenges and solutions Material evaluation – Fibers (PAD activity of Mikhail Dureev)

			Reference target: Modul ~ 30% SGF			
			15% CF	AC-SGF30	AC-LGF30	HF-LGF30
Property	Method	Unit	"EKU 2211T BLACK"	EKG 2058T BLACK	EKM 2216T-30 BLACK	HYM 2226T-30 BLACK
Tensile modulus, 23°C	ISO 527-2/1A	MPa	~ 6700			
Tensile strength, 23°C	ISO 527-2/1A	MPA	75	95	120	125
acU, 23°C acN, 23°C/-30°C	ISO 179/1eU ISO 179/1eA	kJ/m ²	 7/4	55 11/9	60 22/20	60 18/20
Flowability			+	+0	0	+(+)
Emissions	indicatio	on	-	+(+)	+	++
Others			Very low density	Low creep Longer time to failure	Low creep Higher L(ifetime) R (elevant)Load	Good surface

MME: PP-GF for structural applications, Challenges and solutions

Material evaluation – solutions for dedicated applications

				Hostacom GF grades	
			High impact, Low warpage, Low emission IP carrier (20% LGF dryblend)	High stiffness, Low emission, Good surface Liftgates (30% LGF)	High stiffness, Long lifetime, Coolant contact AC-SGF30
Property	Method	Unit	DRM 2234T BLACK	HYM 2226T-30 BLACK	EKG 2087T BLACK
Tensile modulus, 23°C	ISO 527-2/1A	MPa	5000	6700	6700
Tensile strength, 23°C	ISO 527-2/1A	MPA	100	125	95
acU, 23°C acN, 23°C/-30°C	ISO 179/1eU ISO 179/1eA	kJ/m ²	 15/17	60 18/20	55 11/9
Flowability	indication		+(+)	++	+
Remark			Dryblend: LGF-60 based on <i>Catalloy</i> with HF <i>Moplen</i>	Dryblend or ready to use	Grades with SGF content between 0 and 50% and different flowabilities

www.lyondellbasell.com
Company confidential

MME: PP-GF for structural applications, Challenges and solutions

Material evaluation – exposure in coolant or heat

Mechanical properties after 500 h and 1000h at 150°C (exposure to hot air)

Example / Test results:

Tensile creep test performed at **120°C** on injection molded specimen (test longitudinal to fiber direction)

Different loads applied, time measured to failure (☀) to get the acc. pairs of values

"time to failure" of a material (at certain load and certain temperature) can be described as "(expected) lifetime"

"load / lifetime" correlation can be described as "Lifetime Relevant Load" (LRL)

Example / Test results:

Tensile creep test performed at **120°C** on injection molded specimen (test longitudinal to fiber direction)

Different loads applied, time measured to failure (☀) to get the acc. pairs of values

"time to failure" of a material (at certain load and certain temperature) can be described as "(expected) lifetime"

"load / lifetime" correlation can be described as "Lifetime Relevant Load" (LRL)

MME: PP-GF for structural applications, Challenges and solutions Material evaluation

lifetime test video with combined undercranking and slow motion effect.

Source: ZiehlAbegg

www.lyondellbasell.com

Recipe characteristics			HHF-SGF30	AC-SGF30	HHF-LGF30	
Properties	Symbol	Method	Unit			
Ash (1h / 625 °C)	-	ISO 3451/1	%	31,77	30,15	30,53
Tensile test at 23 °C		ISO 527-1, 2				
one end injection						
Tensile stress at yield	σ_y		MPa	85,9	109,2	1
Tensile strain at yield	εy		%	2,1	3	1
Tensile stress at break	σB		MPa	84	108,3	124,3
Tensile strain at break	ε _B		%	2,5	3,4	2,4
Tensile modulus	Et		MPa	6398 😪	6788 욹	6711 😪
Tensile test at 23 °C		ISO 527-1, 2		52	e e e e e e e e e e e e e e e e e e e	70
two ends injection			1	· · · · ·		
Tensile stress at yield	σ_{y}		MPa	$\overline{\mathbf{N}}$	$\overline{}$	
Tensile strain at yield	εy		%			
Tensile stress at break	σΒ		MPa	40,6	41,2	37,4
Tensile strain at break	ε _B		%	1	1	0,8
Tensile modulus	Et		MPa	4947	4946	4896

Catalloy, Spheripol, Spherizone, Hostalen and *Lupotech* are trademarks owned and/or used by LyondellBasell group companies. *Spheripol, Spherizone* and *Hostalen* are registered in the United States Patent and Trademark Office.

All information ("Information") contained herein is provided without compensation and is intended to be general in nature. You should not rely on it in making any decision. LyondellBasell accepts no responsibility for results obtained by the application of this Information, and disclaims liability for all damages, including without limitation, direct, indirect, incidental, consequential, special, exemplary or punitive damages, alleged to have been caused by or in connection with the use of this Information. LyondellBasell disclaims all warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, that might arise in connection with this information.

LyondellBasell does not sell PB-1 for use in pipe applications intended for use in North America, and requires its customers not to sell products made from PB-1 into pipe applications for North America. © LyondellBasell Industries Holdings, B.V. 2011

Basell Deutschland GmbH, Klaus Klemm, 18.06.2019