Closing the carbon loop In the circular plastics economy

Rolf Mülhaupt University of Freiburg, Germany

❑ Do we need to reinvent plastics ?

Is the future of plastics green?

□ How to close the carbon loop?

Institute for Macromolecular Chemistry, Makro

Small molecules (drugs, food ingredients) = long life Macromolecules = better life

Converting polymers into plastics

The growing world population needs plastics!

400

R. Mülhaupt, Ullman's Encyclopedia "Polymers – A General Survey", 2015

The world needs polyolefins! (Plastics the Facts 2020 from PlasticsEurope)

2022 2026 2030 2034 2038 2038 2038 2046 2046

367 Mio tons in 2020

https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/

PlasticsEurope

An analysis of European plastics production, demand and waste data

Curse and blessing of plastics

Bright side

- Low cost / easy processing
 - = affordable products
- Versatility
 - = broad application range = recycling challenges
- Low weight
 - = saving energy
- > Durability
 - = reliability, long life
- Oil-like energy content = energy storage
- Formulated systems
- Biodegradation
 - = composting, biogas
- Degradation
 - = molecular recycling

Dark side

- = throwaway products
- = floating in water
- = long life in short-life applications
- = flammability
- = composites, coatings,... = mechanical recycling is difficult
 - = breeding ground for spores, methane
 - = microplastic formation

Curse and Blessing of Plastics Growth

Source: Ryan, A Brief History of Marine Litter Research, in M. Bergmann, L. Gutow, M. Klages (Eds.), Marine Anthropogenic Litter, Berlin Springer, 2015; Plastics Europe

Source: UN-GRID-Arendal

Maldivies

© Shutterstock

http://www.imo.org/en/MediaCentre/HotTopics/mar inelitter/Pages/default.aspx

https://www.wwf.de/themen-projekte/meere-kuesten/plastik/unsere-ozeane-versinken-im-plastikmuell/

R. Geyer, J.R. Jambeck, K.L. Law, Sci. Adv. 2017, Sci. Adv. 2017;3: e1700782

Plastic Waste Challenge 5 R Strategy: Reduce, Reuse, Recycle, Rethink, Restrain

Ecoel and Rural Affairs

D.G. Bucknall, Philosophical Transactions A 2020, 378, 2176, Plastics as a materials system in a circular economy, DEFRA. 2011 Guidance on applying the waste hierarchy. PB250. <u>www.gov.uk/government/publications/guidance-on-applying-the-waste-hierarchy</u>.

https://bmbf-plastik.de/sites/default/files/2020-08/20-08-04_Hintergrundpapier_Plastikpolitik-final.pdf

Mechanical Recyling & Energy Recovery

Recycling

Downcycling

- <u>Challenges:</u> ≻ Collect/sort
- Robotic sorting + Al
- Compatibilizers
- Design for recycling
- Markets for recylates

Route and the	AND NO AR Y AN
Fuel Ca	lorific Value (MJ/kg)
Methane	53
Gasoline	46
Fuel oil	43
Coal	30
Polyethylene	e 43
Mixed plastic	cs 30-40
Municipal so	lid
waste	10
SMALL AL PR	WINDER V

DSM and Starboard transform discarded fishing nets into high-end surfboard component (**Akulon® RePurposed**)

https://packagingeurope.com/coca-cola-sweden-announces-move-to-100-recycled-material-in-/ https://www.dsm.com/engineering-materials/en_US/connect/press-releases/2018-09-26-dsm-and-starboardcollaboration-transforms-discarded-fishing-nets-from-waste-into-high-end-surfboard-components.html

From Linear to Circular Economy Is Bio-Economy the Future?

LINEAR ECONOMY

CIRCULAR ECONOMY

R. Mülhaupt, Macromol. Chem. Phys. 2013, 214, 159-174, Green Polymer Chemistry and Bio-based Plastics: Dream and reality

C. Schirmeister, R. Mülhaupt, Macromol. Rapid Commun 2022

From Linear to Circular Economy Is Bio-Economy the Future?

Renewable resources

Wood plastics compounds (WPC) Plant fiber composites Natural rubber

Bio-based monomers and polymers

Bioethanol, lactic acid, 1.3-propanediol, succinic acid, polyols,... Polyester, e.g., polylactic acid (PLA), polyhydroxyalkanoate (PHB),....

Biotechnology

Bio-refinery

The battle of the bag: Paper or polyethylene ? => Avoid single use!!!

http://www.letstalkplastics.com/ facts/plastic-bags-versus-paperbags

https://www.bbc.com/ news/business-47027792

Paper

Cellophane

Life Cycle Assessment PLA vs HDPE vs bioHDPE

P. T. Benavides, U. Lee, O. Zare-Mehrjerdi, Journal of Cleaner Production 2020, 277, 124010. Life Cycle Greenhouse Gas Emissions and Energy Use of Polylactic Acid, BioDerived Polyethylene, and Fossil-Derived Polyethylene

Life Cycle Assessmement PLA vs HDPE vs bioHDPE

P. T. Benavides, U. Lee, O. Zare-Mehrjerdi, *Journal of Cleaner Production* 2020, 277, 124010. Life Cycle Greenhouse Gas Emissions and Energy Use of Polylactic Acid, BioDerived Polyethylene, and Fossil-Derived Polyethylene

Biodegradable and non-biodegradable bio-based plastics

Biodegradation is not the holy grail !

PLA Biodegradation by composting at 60 °C, but no degradation in cold sea water

Biodegradation of PLA in Compost at 60 C

Fig. 6. Degradation of PLA at 60 °C.

R.E, Drumright, P.R. Gruber, D.E. Henton,

Adv. Mater. 2000, 12, 1841-1846, Poly Lacticacid Technology G.-X. Wang, D. Huang, J-H. Ji, C. Völker, F.R. Wurm, Adv. Sci. 2021, 8, 200112 Seawater-Degradable Polymers – Fighting the Marine Plastic Pollution Biodegradation is not the solution of the global plastics littering problem

- Biodegradation is climate dependent
- No/low degradation in water
- Bioerosion = fine particles
 - = hazardous micro plastics!
- Breeding ground for spores,...
- Throwaway of biopolymers is counterproductive regarding recycling

Depolymerization and Fragmentation (Thermolysis, Glycolysis, Hydrolysis,...)

Molecular Recycling and Feedstock Recovery: Pyrolysis and Hyropyrolysis

Polymer	Temperature [°C]	Gas [wt%]	Oil [wt%]	Residue [wt%]	Others [wt%]
Polyethylene	760	55.8	42.4	1.8 C	_
Polypropylene	740	49.6	48.8	1.6 C	_
Polystyrene	580	9.9	24.6	0.6	64.9 styrene
Polyester	768	50.8	40.0	7.1	2.1 H ₂ O
ABS	740	6.9	90.8	1.1	1.2 HCN
Polycarbonate	710	26.5	46.4	24.6	2.5 H ₂ O
Polymethylmethacrylate	450	1.25	1.4	0.15	97.2 MMA
Polyvinylchloride	740	6.8	28.1	8.8	56.3 HCl
Phenol/Formaldehyde	780	14.4	28.1	49.5	8.0 H ₂ O
SBR	740	25.1	31.9	42.8	0.2 H ₂ S
Lignin	500	3.4	29.9	49.3	17.4 H ₂ O
Cellulose (from bark)	700	47.1	23.0	18.6 C	11.3 H ₂ O

 Table 1. Recovery of oil and gas by non-catalytic polymer thermolysis.

Data from W. Kaminsky, University of Hamburg *Recycling von Kunststoffen* (Eds: W. Kaminsky, H. Sinn in G. Menges, W. Michaeli, M. Bittner by (W. Kaminsky, H. Sinn in G. Menges, W. Michaeli, M. Bittner, Eds.), Carl Hanser Publishers, Munich **1992**, p. 248; ABS, poly(acrylonitrile-co-styrene-co-butadiene); MMA, methyl methacrylate monomer; SBR, poly(styrene-co-butadiene) rubber. Catalytic degradation < 400 °C e.g. <u>ChemCycling</u>[™] (BASF)

e.g. Recenso / Carboliq Catalytic tribochemical conversion (CTC) https://www.pu-bw.de/wpcontent/uploads/2017/05/open-house-PU_TP-Mesatex_26-04-2017.pdf

<u>Shell IH² Technology</u> Hydropyrolysis

Turning forestry & agricultural residues, aquatic plants & (ligno) cellulosic fractions of municipal waste into fuels

What do Aspirin and Polyethylene have in common? Both molecules were discovered in 1898! Catalyst HDPE granule <u>Aspirin</u>™ OH CH₃ **Polyethylene** \times ASPIRI On-going polyolefin innovations: 1934 ICI High Pressure LDPE (200°C/2000 bar) 1953 Ziegler- and Phillips Low Pressure-PE by BAYER catalysis (80°C/10 bar) 1970 High mileage supported catalysts, no byproducts, gas phase polymerization 1980 Single-site catalysts Since 1898 the same product, 1990 Reactor granule technology same process, same company 2000 Bio-based PE and PP 2020 Polyolefins from renewable carbon

Circulen[™] from LyondellBasell

https://www.lyondellbasell.com/circulen/

circulen

w lyondellbase

circulen

lvondellbasel

Polymers made from plastic wastes through a mechanical recycling process

Polymers made by converting plastic waste into feedstock to produce new polymers using a molecular recycling process

recycled content attributed

MoReTec Pilot Plant in Ferrara

Polymers made from renewable feedstocks such as used cooking oil

1D/2D Nanostructure formation via catalytic olefin polymerization

All-PE composites recycled by remolding

The same nanostructures & properties after 7 times recycling by re-molding

lyondellbasell

T. Hees, F. Zhong, M. Stürzel, R. Mülhaupt, Macromol. Rapid Commun. 2019, 40, 1800608, Tailoring Hydrocarbon Polymers and All-Hydrocarbon Composites for Circular Economy

F. Zhong, R. Thomann, R. Mülhaupt, *Macromolecular Materials and Engineering*. **2018**, *303*, 1800022 Processing-Nanostructure-Property Relationships of All-Polyethylene Composites Reinforced by Flow-Induced Oriented Crystallization of UHMWPE

Feedstocks and polymers from CO₂ and H₂O via CO₂ fixation

Renewable carbon for circular economy and net-zero greenhouse gas emission

Achieving net-zero greenhouse gas emission plastics by a circular carbon economy Raoul Meys^{*}, Arne Kätelhön, Marvin Bachmann, Benedikt Winter, Christian Zibunas, Sangwon Suh, André Bardow^{*}, Science 2021, 374, 71–76

A net-zero emission plastics can be achieved by combining biomass and carbon dioxide (CO₂) utilization with an effective recycling rate of 70% while saving 34 to

53% of energy.

The future solar refinery: Hydrocarbons from carbon dioxide

The solar refinery: Sustainable hydrocarbons from CO₂ 1 Year 300,000,000 Days Years CO₂/H₂O · -----> Biomass -h !!! Solar redox unit Radiation shield Reduction Thermal Solar nsulation Oxidation Control and measurement system parabolic Sun-tracking concentrato Secondary reflector Secondary Hydrocarbon Solar radiative flux/power Temperatures Pressures Solar reactor Mass flow rates Gas composition Ceria RPC Gas analysis → O₂/A) H,O/CO Vacuum Solar reactor 2 pump H₂O Gas analysis Aperture + quartz window H₂O Discarde CO₂/H₂O-depleted air Syngas Sorbent backed bed Recycle Gas analysis Ambier Gas/water Packed-bec analysis reacto Condense Flow controlle Compressor generato Vacuum Compresso pumr Syndas Liquid storage hydrocarbons DAC unit GTL synthesis unit

Remo Schäppi, David Rutz, Fabian Dähler, Alexander Muroyama, Philipp Haueter, Johan Lilliestam, Anthony Patt, Philipp Furler & Aldo Steinfeld,

Nature 2022, 601, 63-68

https://www.ises.org/sites/default/files/webinars/Presentation%20Remo%20Sch%C3%A4ppi_Solar%20Fuel%20Production%20from%20Ambient%20Air%20in%20a%20Modular%20Solar%20Concentrator-Reactor%20System.pdf

Conclusion

- Move away from linear economy and fossil resources to circular economy and renewable carbon (plastic waste, cabon dioxide and biomass).
- Plastics do not need to be be reinvented, but their full potential must be further exploited!
- Bio degradation is not the holy grail and greenwashing is not a solution!
- Carbon loops are not 100% closed and are no Perpetuum Mobile – renewable energy required!
- Polyolefins for sustainability and better life !
- C. Schirmeister. R. Mülhaupt. Macromol. Rapid Com 2022