PE pipes for hydrogen transport

Pipe customer event LyondellBasell

Kiwa Technology B.V.

Partner for Progress

Introduction

Hydrogen transport in the Netherlands: current progress

PE is chemically resistant to hydrogen and no decrease in lifetime is to be expected.

Future-proof gas distribution networks

Switching from natural gas to the sustainable gases

- Resistance of current gas distribution network hydrogen?
- Adjustments needed to current gas networks?
- Costs involved in the changeover?

Future-proof gas distribution networks

Conclusions:

- The gas distribution network is resistant to hydrogen.
- Safe and reliable distribution in the built environment is possible.
- Costs operator/customer are limited compared to alternatives.
- Existing devices are not simply suitable for 100% hydrogen.
- Requirement for revision of standards, work instructions, training of engineers and other professionals.

Future-proof gas distribution networks

Conclusions:

- The gas distribution network is resistant to hydrogen.
- Safe and reliable distribution in the built environment is possible.
- Costs operator/customer are limited compared to alternatives.
- Existing devices are not simply suitable for 100% hydrogen.
- Requirement for revision of standards, work instructions, training of engineers and other professionals.

https://www.netbeheernederland.nl/dossiers/waterstof-56/documenten

Hydrogen transport pilot projects

North Sea Wind Power Hub

Eiland in de Noordzee 2030 - 2050 Elektrolyse voor transport

Tennet van waterstof naar land.

Gasunie

Demo- en trainingswoning Apeldoorn 2020 - 2026

Demo en trainingswoning voor waterstof op het terrein van KIWA.

Entrance terrein Hanzehogeschool

Groningen 2019 - 2020 Test waterstofnet inclusief waterstof cy-ketels.

Waterstofwijk Wagenborgen

30-40 bestaande woningen verduurzamen middels hybride warmtepomp op waterstof.

Wagenborgen 2020 - 2030

Waterstofpilot H2 Oosterwolde

Oosterwolde 2021 - 2026 Waterstof voor inpassen van grootschalige zonne-opwek.

Waterstofpilot Hoogeveen

Hoogeveen 2020 - ∞ H₂ toepassing in bestaande **₄**RENDO infrastructuur en gebouwde ผลรนาเย omgeving.

Tiideliik ombouw Uithoorn Uithoorn 2020 14 woningen ombouwen

van aardgas naar waterstof.

STEDIN"

Waterstofpilot H2 Lochem

Lochem 2022 - 2025 Waterstof als alternatief voor aardgas in monumentale

Waterstofpilot The Green Village

Delft 2019 - 2025 Beheren van een 100% waterstofnet.

Waterstofpilot P2G

Rotterdam Rozenburg 2013 - 2023 Gesloten waterstofsysteem in de gebouwde omgeving. STED!N"

Waterstofombouw

Stad aan 't Haringvliet 2025 - 00 Ombouw waterstof in de gebouwde omgeving.

STED!N" Gasunie

Netbeheer Nederland

Pilots across the entire chain

Production

Distribution

Build environment

Appliances

HyDelta research program

Public-private partnership and Dutch national research program facilitating the large scale implementation of hydrogen.

HyDelta 1.0 and 2.0 finished, HyDelta 3.0 is about to start.

General research topics in the program

- Hydrogen safety
- Hydrogen in the gas grid
- Value chain & hydrogen admixing
- Economic aspects of the hydrogen system
- Hydrogen & transport assets
- Social aspects of hydrogen

HyDelta research program

- Research topics already covered
 - Odorization
 - Piping and indoor installations
 - Emergency shut-off valves
 - Safe operations in the transmission and distribution grid
 - Venting and flaring of hydrogen
 - Purging
- All the reports and output can be found via the website

https://hydelta.nl/

PE pipes for hydrogen

Hydrogen transport in the Netherlands: current progress

PE is chemically resistant to hydrogen and no decrease in lifetime is to be expected.

- Chemical compatibility
- Permeability

EN 1555 series (2021) currently under revision (for H₂)

Kiwa Technology B.V.

- Experience
- Practical tests
- Laboratory investigations

Kiwa Technology B.V.

- Experience
 - ☐ Hong Kong & China Gas company: ~50% H₂ since 1987
 - Hawai'i Gas: up to 15% H₂
 - Industry, using coke oven gas and town gas: over 40% H₂
- Practical tests
- Laboratory investigations

12

- Experience
- Practical tests
 - ☐ NL: 4 year trial up to 20% H₂
 - DK: 10 year trial 100% H₂
 - □ DE: multiple projects ranging from 9,9% H₂ up to 100% H₂
 - ☐ UK: Two sites with 20% H₂
- Laboratory investigations

Source: Avacon – Waserstoff im Gasnetz

- Experience
- Practical tests
- Laboratory investigations
 - ☐ At high pressure, up to 100 bar
 - At high temperature, up to 80°C
 - ☐ Various periods, up to 13 months

- What is permeation?
- What are the permeation values for PE pipes?
- How does permeation compare to leakage?

What is permeation?

Pipe wall

Kiwa Technology B.V.

Permeation rate dependencies:

- Permeate
 - ☐ Gas, liquid, or vapour
- Concentration difference permeate
 - ☐ (For gases often expressed as partial pressure)
- Dimensions of the barrier layer
 - Wall thickness, surface area
- Permeability coefficient of the material
- Temperature

- What is permeation?
- What are the permeation values for PE pipes?

$$\left[\frac{ml \cdot mm}{m^2 \cdot bar \cdot day}\right]$$

☐ MDPE 191-193

☐ PE50 143-180

☐ PE80 148-167

☐ PE100 133-139

☐ PE100-RC 125-140

How does permeation compare to leakage?

- What is permeation?
- What are the permeation values for PE pipes?
- How does permeation compare to leakage?
 - □ MDPE SDR17,6 100mbar \rightarrow 5.10⁻⁴ dm³/m/hour
 - ☐ PE100-RC SDR11 8bar \rightarrow 1,6-1,8·10⁻³ dm³/m/hour

Maximum leak size at a test pressure equal to MOP		
Type of pipe	Natural gas Max. leak rate [dm³/h]	Hydrogen Max. leak rate [dm³/h]
Main pipeline	5.0	5.0
Service pipeline - new*	0.2	0.2
Service pipeline - existing	1.0	0.7
Meter set-up	0.1	0.1

Source: DOI:10.5281/zenodo.5901917 – Recommendation for NEN 7244-7

Stay in touch

Sjoerd Jansma

Consultant Materials Wilmersdorf 50 7327 AC Apeldoorn The Netherlands

+31 6 134 70 233

Sjoerd.jansma@kiwa.com

www.kiwa.com

www.linkedin.com/company/kiwa

www.youtube.com/user/Kiwa1948

