Expanding the Temperature Range of Polyolefin Films

Presented by:
Matt Sonnycalb
Tom Schwab
LyondellBasell
Statement of Problem

- PP and PE each offer advantages over the other

- PP
 - Heat resistance
 - Modulus / Optics balance
 - Abrasion / Grease Resistance

- PE
 - Impact resistance, especially at low temperatures
 - Tear resistance

Can we use multilayer films to leverage the advantages of each material to create differential performance?
Experiment

- Combined 3 key types of PP with 3 key types of PE
- Coextrusion: 25 / 50 / 25 ABA layer distribution
 - Allows structure inversion with constant composition
 - No hPP skin / LDPE core sample due to lack of material
- 51 micron films, 2.54 mm die gap, 152.4 mm die, 2.5:1 BUR, 68 kg/hr

<table>
<thead>
<tr>
<th>PP Type</th>
<th>Product Code</th>
<th>MFR (g/10 min)</th>
<th>% Ethylene</th>
<th>Key Additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homopolymer</td>
<td>hPP</td>
<td>1.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Random Copolymer</td>
<td>Raco</td>
<td>2.0</td>
<td>3.5</td>
<td>Clarified</td>
</tr>
<tr>
<td>Impact Copolymer</td>
<td>Impact</td>
<td>1.8</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PE Type</th>
<th>Product Code</th>
<th>MI (g/10 min)</th>
<th>Density (g/cc)</th>
<th>Key Additives (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butene-LLDPE</td>
<td>LLDPE</td>
<td>1.0</td>
<td>0.918</td>
<td>900 slip / 5500 AB</td>
</tr>
<tr>
<td>mLLDPE</td>
<td>mLLDPE</td>
<td>1.0</td>
<td>0.918</td>
<td>1000 slip / 5000 AB</td>
</tr>
<tr>
<td>LDPE</td>
<td>LDPE</td>
<td>2.0</td>
<td>0.918</td>
<td>500 slip / 4000 AB</td>
</tr>
</tbody>
</table>
Dart Drop – ASTM D1709 Method A

Improves with PE Skins, mLLDPE or Impact Copolymer content
Dart Drop – Alternate Views of Results

PE Skins

- **mLLDPE**: 293, 182, 81
- **LLDPE**: 304, 116, 168
- **LDPE**: 171, 107, 96

PP Skins

- **mLLDPE**: 278, 179, 122
- **LLDPE**: 131, 81, 71
- **LDPE**: 96

Legend
- **I** = Impact
- **R** = Raco
- **H** = hPP

Improves with PE Skins, mLLDPE or Impact Copolymer content
Elmendorf Tear (Mach. Dir.) – ASTM D1922

Improves with PP Skins, mLLDPE or Impact Copolymer content
Elmendorf Tear (MD) – Alternate Views

PE Skins

- **mLLDPE**
- **LLDPE**
- **LDPE**

<table>
<thead>
<tr>
<th>Layer Material</th>
<th>mLLDPE</th>
<th>LLDPE</th>
<th>LDPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>131</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Raco</td>
<td>60</td>
<td>14</td>
<td>11</td>
</tr>
</tbody>
</table>

PP Skins

- **I = Impact**
- **R = Raco**
- **H = hPP**

<table>
<thead>
<tr>
<th>Layer Material</th>
<th>mLLDPE</th>
<th>LLDPE</th>
<th>LDPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>147</td>
<td>108</td>
<td>44</td>
</tr>
<tr>
<td>Raco</td>
<td>122</td>
<td>37</td>
<td>33</td>
</tr>
</tbody>
</table>

Improves with PP Skins, mLLDPE or Impact Copolymer content
1% Secant Modulus (Mach. Dir.) – ASTM D882

Depends on material choice, not location within structure. hPP gives higher modulus to structure.
Haze – ASTM D1003

Controlled by surface layers, but some “internal” haze contribution
Interlayer Adhesion

- Polypropylene / Polyethylene structures uncommon in industry
 - Limited awareness of adhesion performance between layers
 - Adhesion important to heat seal performance

- Performance Testing
 - Heat seal multilayer films (PE skins) to fusion
 - 275 kPa, 2 seconds dwell time, 168°C
 - Test seal strength by tensile T-peel test
 - 305 mm/minute crosshead speed
mLLDPE shows enhanced adhesion to all 3 PP types

0.77 kN/m = 2000 grams/inch
Conclusions

Polyethylene Skins

<table>
<thead>
<tr>
<th>Material</th>
<th>Impact</th>
<th>Raco</th>
<th>hPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>mLlDPE</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>LLDPE</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LDPE</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Polypropylene Skins

<table>
<thead>
<tr>
<th>Material</th>
<th>Impact</th>
<th>Raco</th>
<th>hPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- **Highlighted cells** indicate improved performance based on material type and layer choice.
- **Cell contents (+/- signs)** indicate relative rank for that property.
 - Only listed if significant differences present.
Potential Application Benefits

- Modulus improvement
- Down-gauging opportunities
- Density improvement
- Heat resistance improvement
- Improved hot-tack performance
Disclaimers

Before using a product sold by a company of the LyondellBasell family of companies, users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. SELLER MAKES NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY WARRANTY) OTHER THAN AS SEPARATELY AGREED TO BY THE PARTIES IN A CONTRACT.

LyondellBasell prohibits or restricts the use of its products in certain applications. For further information on restrictions or prohibitions of use, please contact a LyondellBasell representative.

Users should review the applicable Safety Data Sheet before handling the product.