HDPE Barrier Lamination Offers Potential for Metalized Film Replacement

Tom Schwab
LyondellBasell
Agenda

• High-Barrier Food Packaging Background
• HDPE Barrier Lamination Concept
• Comparison of HDPE Barrier Lamination Structures with Current Food Packages
• Conclusions
Presentation Introduction

• Historically, packaging that required excellent barrier properties used foil

• Product development and lower costs led many barrier food packaging applications to move to metalized film

• New developments in HDPE resin design and nucleation provide significantly improved moisture barrier over traditional HDPE resins used in barrier applications

• Use of next-generation HDPE barrier products may provide sufficient product shelf life for over-engineered packages
High-Barrier Food Packaging

- A major market for metalized film is stand-up pouches
- 2013 United States pouch usage = 17 billion units
 - 50% growth in past five years
- Food applications represent over 60% of pouch end-uses
 - Pet food = 33%; Human food = 30%
- Forecasted 2018 US pouch demand = 24 billion units
- Growth spurred by bottle/can replacement, packaging cost reduction, and increased consumer convenience

Source: Packaging Digest, October 31, 2013.
Typical Metalized Film Structures

<table>
<thead>
<tr>
<th>Reverse-printed PET/oPP Film</th>
<th>Reverse-printed PET/oPP Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE Laminating Layer</td>
<td>Adhesive</td>
</tr>
<tr>
<td>Metalized PET/oPP Film</td>
<td>Metalized PET/oPP Film</td>
</tr>
<tr>
<td>LDPE Laminating Layer</td>
<td>Adhesive</td>
</tr>
<tr>
<td>PE Sealant Film</td>
<td>PE Sealant Film</td>
</tr>
</tbody>
</table>

- Typical overall structure gauge = 3.0 – 4.0 mil
- Requires two passes through lamination line
- Applications – Bags/pouches for end-uses typically requiring good moisture and/or oxygen barrier
HDPE Barrier Lamination Concept

- HDPE Barrier Lamination presented by LyondellBasell at TAPPI PLACE in 2012

- Compared barrier of HDPE extrusion coating on Kraft paper with HDPE blown film laminated to Kraft paper

- Presentation showed significantly improved barrier resulted with the use of HDPE laminating film

- Study also outlined additional potential design capabilities by incorporating laminating film into structure
HDPE Barrier Lamination Structures

- HDPE Laminating Film uses blown film made with next-generation HDPE with excellent moisture barrier
 - Replaces metalized film and sealant layers

- Uses co-extrusion technology to incorporate other materials for other packaging features
 - Sealant, toughness, O$_2$ barrier, etc.
Potential Advantages for HDPE Barrier Lamination

- Lower costs
 - Material costs
 - Single-pass through extrusion coating line

- Food packaging differentiation
 - Windows (if desired) to view product

- Improved food product safety
 - Allow use of metal detectors for metal contaminants
 - Allow use of high voltage leak detection systems

- Ability to tailor film structure to enhance package
 - Use different polymers/layers for barrier (H_2O, O_2), toughness, sealing/opening, etc. as desired

- Overall structure yield advantage compared to structures containing metalized PET films
HDPE Barrier Lamination Sample Preparation

• Produced ABA co-ex blown films
 • Skin layers (A) were butene LLDPE
 • Primary functions were for toughness and sealant layer
 • Core layer (B) was nucleated, next-generation HDPE homopolymer
 • Used layer distributions of 15-70-15 and 30-40-30
 • 3.0-mil total gauge

• Produced extrusion lamination films on coating line
 • Used 48-gauge PET film as substrate
 • Laminated ABA co-ex films to PET with 0.5-mil LDPE
 • For subsequent charts, 15-70-15 = 48-gauge PET / 0.5-mil LDPE / 15-70-15 LLDPE-HDPE-LLDPE
 • Same sample description for 30-40-30 laminating film

• Total film gauge = 4.0 mil

Blown Film Line Conditions: 6-inch die, 60-mil die gap, 3.0:1 BUR
Extrusion Coating Line Conditions: 7-inch air gap, 615°F melt temperature,
250 feet per minute line speed, Michelman MFP888 primer
HDPE Barrier Lamination Comparison Testing

- Purchased dog treats and cookies packaged in metalized film structures

- Analytical testing found films were 3-ply with:
 - Reverse printed PET primary substrate
 - Metalized PET film layer
 - PE-based sealant layer

- Total film gauge = 3.3 – 4.2 mil

- Test samples cut from packages for film testing
 - Toughness – Tear, Puncture
 - Stiffness
 - Optics
 - Food aging
HDPE Barrier Lamination Comparison Testing

Tear

Barrier Lamination structures have as good or better tear
HDPE Barrier Lamination Comparison Testing

Puncture

Barrier Lamination structures have similar puncture as dog treats
HDPE Barrier Lamination Comparison Testing
Stiffness

- Stiffness measurements are difficult for films
- To try to compare stiffness, 0.5 mm by 100 mm strips cut from packages
- Specimens allowed to overhang table (10 mm held on table)

Barrier Lamination structures appear to have higher stiffness
HDPE Barrier Lamination Comparison Testing Optics

<table>
<thead>
<tr>
<th>Lamination Structure</th>
<th>Dog Treat</th>
<th>Cookie</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-70-15 Lamination (Haze = 31)</td>
<td>![Dog Treat Image]</td>
<td>![Cookie Image]</td>
</tr>
<tr>
<td>30-40-30 Lamination (Haze = 22)</td>
<td>![Dog Treat Image]</td>
<td>![Cookie Image]</td>
</tr>
</tbody>
</table>

Barrier Lamination structures may allow product to be seen (if desired)
HDPE Barrier Lamination Comparison Testing
Food Aging

- To assess potential real-world shelf-life performance, completed food-aging studies by making packages

- Cut 4-inch by 4-inch sections of film
 - Produced control samples by using metalized film structures

- Heat sealed film edges to fusion

- Filled package with food samples
 - Approximately 20 grams for cookies
 - Approximately 30 grams for dog treats
 - Film for packages weighed about 2 grams
 - 3 specimens per sample

- Stored samples in 23°C, 50% relative humidity lab

- Weighed samples on Monday, Wednesday, and Friday
HDPE Barrier Lamination Comparison Testing
Food Aging

Barrier Lamination Dog Treat Sample

Barrier Lamination Cookie Sample

Dog Treat Control Sample

Cookie Control Sample
Increased HDPE loading leads to structures that approach the weight change of the control bag. This may be sufficient for many packaging applications.
HDPE Barrier Lamination Comparison Testing

Food Aging

Weight Change for Cookies over 100 Days
(Stored at 23C and 50% Relative Humidity)

<table>
<thead>
<tr>
<th>Structure</th>
<th>Cookies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Bag (Control)</td>
<td>0.26%</td>
</tr>
<tr>
<td>15-70-15 Lamination</td>
<td>0.25%</td>
</tr>
<tr>
<td>30-40-30 Lamination</td>
<td>0.43%</td>
</tr>
</tbody>
</table>

Increased HDPE loading leads to structures that approach the weight change of the control bag. This may be sufficient for many packaging applications.
Results Summary
+ indicates improved performance for lamination
- indicates better performance by existing structure

<table>
<thead>
<tr>
<th></th>
<th>15-70-15 Lamination</th>
<th>Dog Treat</th>
<th>Cookie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tear</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Puncture</td>
<td>=</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Haze</td>
<td>+++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Food Aging</td>
<td>-</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>30-40-30 Lamination</th>
<th>Dog Treat</th>
<th>Cookie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tear</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Puncture</td>
<td>=</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Haze</td>
<td>+++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Food Aging</td>
<td>--</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

While food aging may not be equivalent, is it good enough for over-engineered packages or for actual supply chain cycle?
Conclusions

• New lamination structures may be closing food freshness gap

• Over-engineered packages may be able to move to polyolefin-based lamination film structures

• Laminating film composition affects performance

• New non-metalized structures may offer other benefits

• Additional structure and material optimization may lead to further improvements in performance
Disclaimer

Before using a product sold by a company of the LyondellBasell family of companies, users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. SELLER MAKES NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY WARRANTY) OTHER THAN AS SEPARATELY AGREED TO BY THE PARTIES IN A CONTRACT.

LyondellBasell prohibits or restricts the use of its products in certain applications. For further information on restrictions or prohibitions of use, please contact a LyondellBasell representative.

Users should review the applicable Safety Data Sheet before handling the product.

© LyondellBasell Industries Holdings, B.V. 2015