HDPE Barrier Laminating Films for Use in Flexible Packaging Structures

Presented by:
Scott Weber
AD/TS Engineer
LyondellBasell
Presentation Outline

• Objective
• Market / Applications
• Experimental Procedures
• Results
• Benefits / Conclusions
HDPE Barrier Laminating Films

• Proposition: Extrusion lamination of high barrier HDPE-based films to replace:
 – Foils and metalized films
 – HDPE extrusion coatings

• Potential Benefits
 – Sustainability/Recyclability – Eliminating or reducing foils and metalized films
 – Weight and energy savings
 – Cost savings – Replacing over-engineered structures
 – Improved Water Vapor Transmission Rates (WVTR) compared to LDPE and HDPE extrusion coatings
 – Design flexibility to optimize WVTR and Oxygen Transmission Rate (OTR)
Extrusion Coating Markets / Applications

• Flexible Packaging
 – Snacks (chips, peanuts)
 – Dry-goods (instant potatoes, hot chocolate)

• Medical Flexible Packaging

• Paper / Paper Board Packaging
 – Folding cartons (frozen foods, bulk packaging)
 – Liquid cartons (orange juice)
Alathon M6010SB (1.1 g/10 min Melt Index, Homopolymer)
Next-generation MMW HDPE for Barrier Films

- Used in films having optimized moisture barrier improvement through resin structure design and nucleation
 - 30-40% WVTR improvement compared to incumbent barrier HDPE resins

- Specifically formulated to retain important film properties
 - Tear
 - Puncture, dart
 - Stiffness
 - Low organoleptics
 - Low gels

- Film processability – can be used in any film layer without processing issues
 - Low dusting
 - No melt fracture

![Graph showing WVTR Improvement (2.3 mil coextrusion)]
Extrusion Coating Structures

• Incumbent Structures Using:
 – HDPE extrusion coating resins
 – High cost specialty resins or substrates
 • e.g. laminations using foils and metalized films

• Proposed Structures
 – Laminations Using HDPE-Based Barrier Films
 • Laminations designed for specific product requirements
 • Can incorporate monolayer and co-ex HDPE film structures
Potential Film Structures for Lamination

• Monolayer Structure
 – Supports WVTR Barrier improvements
 – WVTR controlled by film thickness

• 3 Layer Structures
 – Skins for heat seal / seal strength requirements
 – Core layer for WVTR requirements

• 5-Layer Structures
 – Skins: HDPE for WVTR needs
 – Core: Specialty resin for OTR requirements
Experimental Outline

• Performed laboratory studies to evaluate the performance of barrier HDPE film laminations compared to:
 – standard HDPE extrusion coatings
 – incumbent foil-based packaging structures

• Produced monolayer and 5-layer coextruded films at three thicknesses

• Conducted extrusion coating / lamination trials

• Measured WVTR and OTR
HDPE Blown Film Lab Trials
Samples produced at 19, 32 & 51 microns (0.75, 1.25 and 2.0 mils)

• Monolayer 100% high barrier HDPE Film Structure
 – 152 mm die, 1520 micron gap, 2.8 BUR, 80 kg/hr (175 lbs/hr)

• 5-Layer Co-ex Film Structure
 – 203 mm die, 1400 micron gap, 2.5 BUR, 68 kg/hr (150 lbs/hr)
 – ABCBA film structure:

 ![Diagram showing film structure](image)
 Next Gen. Barrier HDPE 33%
 Tie Layer 13%
 O₂ Barrier EVOH 28%
 Tie Layer 13%
 Next Gen. Barrier HDPE 13%
Extrusion Coating / Lamination Lab Trials

• Coating trials were designed to compare HDPE extrusion coatings to HDPE-based film laminations

• Extrusion coating processing conditions:
 – 320°C melt temperature
 – 180 m/min line speed
 – 178 mm air gap
 – 68 micron Kraft paper
Extrusion Coated Lab Structures
Incorporating HDPE Extrusion Coating Resins

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Substrate 68 micron</th>
<th>Inner Layer 21 micron (25%)</th>
<th>Core Layer 41 micron (50%)</th>
<th>Sealant Layer 21 micron (25%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctg. - Coex</td>
<td>kraft</td>
<td>LDPE MI: 10 g/10 min Density: 0.918 g/cc</td>
<td>HDPE MI: 12 g/10 min Density: 0.960 g/cc</td>
<td>LDPE MI: 10 g/10 min Density: 0.918 g/cc</td>
</tr>
<tr>
<td>Ctg. – Nucl. Coex</td>
<td>kraft</td>
<td>LDPE</td>
<td>Nucleated HDPE</td>
<td>LDPE</td>
</tr>
<tr>
<td>Ctg. - Blend</td>
<td>kraft</td>
<td>Monolayer Blend of 50% LDPE / 50% HDPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctg. – Nucl. Blend</td>
<td>kraft</td>
<td>Monolayer Blend of 50% LDPE / 50% Nucleated HDPE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WVTR Results
Comparing HDPE-Based Extrusion Coatings

* Industry standard barrier values
Extrusion Lamination Lab Structures Incorporating HDPE-Based Lamination Films

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Substrate 68 micron</th>
<th>Core Layer 12 micron</th>
<th>Laminating Film 19 – 51 micron</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Mono</td>
<td>kraft</td>
<td>LDPE</td>
<td>19 Micron Monolayer Film</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MI: 5.6 g/10 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Density: 0.923 g/cc</td>
<td></td>
</tr>
<tr>
<td>32 Mono</td>
<td>kraft</td>
<td>LDPE</td>
<td>32 Micron Monolayer Film</td>
</tr>
<tr>
<td>51 Mono</td>
<td>kraft</td>
<td>LDPE</td>
<td>51 Micron Monolayer Film</td>
</tr>
<tr>
<td>19 Coex</td>
<td>kraft</td>
<td>LDPE</td>
<td>19 Micron 5-Layer Film</td>
</tr>
<tr>
<td>32 Coex</td>
<td>kraft</td>
<td>LDPE</td>
<td>32 Micron 5-Layer Film</td>
</tr>
<tr>
<td>51 Coex</td>
<td>kraft</td>
<td>LDPE</td>
<td>51 Micron 5-Layer Film</td>
</tr>
</tbody>
</table>
WVTR Results
Monolayer HDPE Film Laminations vs. Incumbents

* Industry standard barrier values
WVTR / OTR Results
Co-ex HDPE Film Laminations vs. Incumbents

* Industry standard barrier values
Conclusions / Demonstrated Benefits

- Primary Benefits
 - Sustainability/Recyclability – Eliminating or reducing foils and metalized films
 - Weight and energy saving
 - Cost savings – Replacing over-engineered structures
 - Improved Water Vapor Transmission Rates (WVTR) compared to LDPE and HDPE extrusion coatings
 - Design flexibility to optimize WVTR and Oxygen Transmission Rate (OTR)

- Additional Benefits vs. HDPE Coatings
 - Package physical property improvements (e.g. tear, puncture, modulus)
 - Design flexibility for package sealant layer
 - Improved processing
 - Organoleptics
Polyolefin Innovations from LyondellBasell

• Thank you for your attention. Questions?

• Special thanks to: Tom Schwab, Jeff Borke, Scott Clayton, Bob Holweger and Barb Harding

• Please contact scott.weber2@lyondellbasell.com for more information
Disclaimer and Trademarks

• *Alathon, Petrothene and Plexar* are trademarks owned or used by the LyondellBasell family of companies and are registered in the U.S. Patent and Trademark Office.

• All technical assistance and advice is furnished by LyondellBasell without compensation. LyondellBasell assumes no obligation or liability with respect to such advice and assistance and disclaims any and all warranties with respect to such advice and assistance.

• Before using a product sold by one of the LyondellBasell family of companies, users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. LyondellBasell and its affiliates MAKE NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE) OTHER THAN AS SEPARATELY AGREED BETWEEN THE PARTIES IN WRITING. These products may not be used in the manufacture of any US FDA Class III Medical Device or Health Canada Class IV Medical Device and may not be used in the manufacture of any US FDA Class II Medical Device or Health Canada Class II or Class III Medical Device without the prior written approval by Equistar of each specific product or application.

• Users should review the applicable Material Safety Data Sheet before handling the product.

© LyondellBasell Industries Holdings, B.V. 2011
Thank you

PRESENTED BY

Name Scott Weber
Title AD/TS Engineer
Company Equistar Chemicals, LP
a LyondellBasell company

Scott.weber2@lyondellbasell.com