Public Notice of Application and Intent to Obtain Air Permit Amendment and Renewal

Equistar Chemicals, LP

New Source Review (NSR) Permit 9423 Permit Renewal and Amendment Application

Regulated Entity No. RN100216761

Customer No. CN600124705

Bayport Polypropylene Plant
Bayport Polymers Plant (BYO)
Pasadena, TX; Harris County

June 2020

Copy placed in LaPorte Public Library on June 26, 2020 through book drop-off

June 01, 2020

Air Permits Initial Review Team (APIRT) – MC 161 Office of Permitting, Remediation, and Registration Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087 **ELECTRONIC SUBMISSION**

Re: New Source Review (NSR) Permit Renewal and Amendment Application

NSR Permit Number: 9423 Equistar Chemicals, LP

Bulk Plant Polypropylene Production Unit

Customer Number CN600124705

Regulated Entity Number RN100216761

Attn: APIRT

Equistar Chemicals, L.P. (Equistar) is submitting the enclosed concurrent permit renewal and amendment application for the above-referenced facility to include emissions authorized under New Source Review (NSR) Permit Number 9423 and referenced Permits by Rule (PBRs).

With this permit renewal and amendment application, Equistar is requesting:

- Nomenclature changes of various emission point numbers (EPNs) and source names to better align with the plant equipment naming convention.
- Updates to existing sources:
 - Low Off Gas (LOG) Flare
 - Elevated Flare
 - Cooling Towers
 - Process Vessels
 - Stabilizer Additive Drums
 - Polymer Handling Sources
 - Fugitives
 - Mineral Oil Storage Tanks
 - Analyzer vents
- Addition of new EPNs to address:
 - MSS activity profile for reactor dumps
 - Vacuum cleaning systems associated with MSS
 - o Plant-wide sampling vents.
 - MSS activities to the lists of Routine Maintenance Activities
- Deletion of:
 - o Additive Metering Drum EPN
 - o Flare EPN

Furthermore, previously identified authorized sources and changes occurred under the PBR requirements of 30 TAC 106 and these PBRs will be incorporated by consolidation or incorporated by reference in this permit renewal and amendment process

Included in this submittal are all required components, documents, and analyses regarding this permit renewal and amendment. This includes **CONFIDENTIAL** information which is segregated and clearly labeled in the appendix of the application package. Please handle this information accordingly. If you have any questions or need additional information, please contact Carlisa Navy at (281) 474-0727 or by email at Carlisa.Navy@lyondellbasell.com.

Sincerely,

Gerald Crawford

Manager, Environmental – Bayport Complex

Attachments

cc:

Harris County Pollution Control Services Dr. Latrice Babin, Director 101 S. Richey, Suite H Pasadena, TX 77506 Air Section Manager TCEQ Region 12 5425 Polk Street, Suite H Houston, TX 77023-1452

NEW SOURCE REVIEW AIR QUALITY PERMIT 9423 RENEWAL AND AMENDMENT APPLICATION

Equistar Chemicals, L.P.

Bayport Polymers Plant

Bulk Plant Polypropylene Production Unit 12001 Bay Area Blvd. Pasadena, Texas

June 2020

Prepared by: BGE, Inc

Table of Contents

Section 1	Proje	ect Information	1-1
Section 2	Area	Map	2-1
Section 3	Plot 1	Plan	3-1
Section 4	Proce	ess Description	4-1
Section 5	Proce	ess Flow Diagram	5-1
Section 6	Emis	sion Calculations	6-1
	6.1	FLARE	6-1
	6.2	FUGITIVES	6-2
	6.3	PROCESS VESSELS	6-2
	6.4	STORAGE TANKS	6-2
	6.5	WASTEWATER	6-3
	6.6	COOLING TOWERS	6-3
	6.7	SAMPLING AND ANALYSIS VENTS	6-3
	6.8	RESIDUAL EMISSIONS	6-3
	6.9	POLYMER HANDLING SOURCES	6-4
	6.10	WASTE OIL LOADING	6-4
	6.11	MAINTENANCE, STARTUP, AND SHUTDOWN (MSS)	6-4
Section 7	Fede	ral New Source Review Applicability Analysis	7-1
Section 8	Best .	Available Control Technology (BACT)	8-1
Section 9	Regu	latory Applicability Review	9-1
Section 10	Mode	eling Analysis	10-1
		CONFIDENTIAL	
Section 11	Appe	endices	11-1
	APPEN	NDIX A - PROCESS DESCRIPTION	11-2
	APPEN	NDIX B - PROJECT INCREASE TABLE	11-4
	APPEN	NDIX C - SUPPORTING EMISSION CALCULATIONS	11-8
	APPEN	NDIX D - TCEQ TABLES	11-9

COPY OF CHECK (Submitted separately - USPS Tracking # 9405 5036 9930 0399 8710 44)

Section 1 Project Information

Equistar Chemicals, LP (Equistar), a wholly owned subsidiary of LyondellBasell Industries, owns and operates the Bayport Polymers Plant at 12001 Bay Area Blvd., in Pasadena, Harris County, Texas, which is part of the Bayport Chemicals Complex. The Bayport Polymers Plant consists of Bulk Plant and Catalloy Polypropylene Production Units. The Bulk Plant process unit operates three process lines (C, D, and E-Lines).

Air emissions from Equistar's Bulk Plant unit are authorized under the Texas Commission on Environmental Quality (TCEQ) New Source Review (NSR) Permit No. 9423, several permits by rule, and Title V Operating Permit No. 01419. This document constitutes an application to the TCEQ for a concurrent permit renewal and amendment for NSR Permit No. 9423. In conjunction with this application package, the TCEQ's PI-1 General Application Workbook and the Electronic Modeling Evaluation Workbook (EMEW) have been submitted along with the associated fees paid via check.

With this permit renewal and amendment application, Equistar is requesting:

- Nomenclature changes of various emission point numbers (EPNs) and source names to better align with the plant equipment naming convention. These changes are reflected in the following 2020 Maximum Allowable Emissions Rate Table (MAERT) EPN And Source Name Changes Table;
- Updates to existing sources:
 - Low Off Gas (LOG) Flare (formerly EPN: 30): Removed this source as it has been permanently shut down. This resulted in changing the flare emission factor for CO, for the remaining Elevated Flare, to reflect only a steam-assisted flare.
 - Elevated Flare: The ethylene emissions from the flare during MSS activities have been increased to equal the total VOC emissions during MSS to allow for operational flexibility during these activities.
 - Cooling Towers: Revising the emissions calculations to use the more accurate circulation rate representations based on design data for the hourly emissions and the average circulation rate for the annual emissions.
 - Process Vessels VOC Emissions: Revising the emission calculation basis for the oil/grease mixing drums, catalyst dispersion drums, donor drums, liquid additive drums, stabilizer additive drums, and TEAL seal pot drums. Previously most of these sources were treated as storage tanks. Emissions calculations now reflect the batch operation of these vessels and use engineering calculation methodologies (i.e. Ideal Gas Law, etc.) to calculate the emissions.
 - Stabilizer Additive Drums Particulate Matter Emissions: Revising the emission calculation methodology to use AP-42 emission factors and charge rate to estimate the PM, PM₁₀, and PM_{2.5} emissions. In addition, PM, PM₁₀, and PM_{2.5} emissions were added to EPN: D-6504 (formerly EPN: 51) to be consistent with these other drums.

- Polymer Handling Sources: Revising the emission calculations to use the maximum design flow rates resulting in both increases and decreases in emissions. Additionally, newly identified sources are being added to this group as well as some existing permitted sources where the emissions representations are being revised to reflect particulate matter emissions. Process knowledge has been used to speciate the PM₁₀ and PM_{2.5} emissions for these sources.
- Fugitives: Updating the fugitive component counts for EPNs C-FUG, D-FUG, and E-FUG (former EPNs: 35, 41, and 52, respectively) based upon more accurate data. Natural gas components and other fugitive components related to skids, bullets, and OSBL sources that were previously attributed to EPNs C-FUG, D-FUG, and E-FUG have been separated into a new fugitive EPN U-FUG. Because the emissions now associated with new EPN U-FUG were existing and are merely being re-allocated to a new EPN, these emissions are not being considered new and are not addressed in the Federal NSR or BACT analyses.
- Mineral Oil Storage Tanks: Updating to reflect the AP-42 revisions published in November 2019.
- Analyzer vents: Adding additional analyzers and changing the existing permit calculations to reflect more accurate vent flowrates.
- Addition of new sources:
 - Addition of four new EPNs to address an MSS activity profile for reactor dumps with associated PM, PM₁₀, and PM_{2.5} emissions.
 - Addition of two new EPNs to address vacuum cleaning systems associated with MSS with associated PM, PM₁₀, and PM_{2.5} emissions.
 - Addition of a new EPN to address plant-wide sampling vents
- Addition of the following MSS activities to the lists of Routine Maintenance Activities found in Attachments B and C to NSR Permit No. 9423:
 - Plant-Wide Outages: Shutting down the entire facility, venting process off-gas, purging/degassing, and startup emissions venting to the Elevated Flare during plant-wide outages for turnarounds, etc. No additional emissions are needed for this activity as the emissions are addressed by the Flare MSS emissions and were authorized in the 2014 MSS amendment application.
 - Maintenance at Third-Party Facility: Venting process off-gas to the Elevated Flare (former EPN: 30, new EPN: FL-3706) during planned maintenance events at the third-party facility. No additional emissions are needed for this activity as the emissions are addressed by the Flare MSS emissions.
 - Use of Propane for Pilot Operations: During periods when natural gas in unavailable, propane is used to operate flare pilots. No additional emissions are needed for this activity as the emissions are addressed by the Flare MSS emissions.

Deletion of sources:

- Deletion of former EPN 148 (Additive Metering Drum) as this process vessel is not open to the atmosphere as it vents to process vessel D-6112 (EPN: D-6113).
- Deletion of EPN MSS45 as this maintenance, startup, and shutdown activity does not vent to the atmosphere.

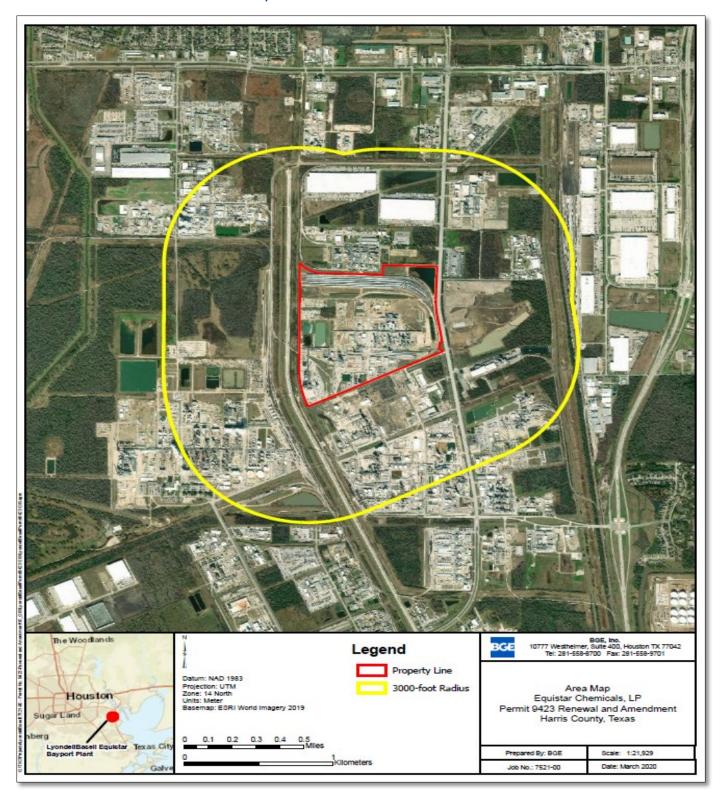
Furthermore, previously identified authorized sources and changes occurred under the Permits by Rule (PBR) requirements of 30 TAC §106 as shown below. These PBRs will be incorporated by consolidation or incorporated by reference in this permit renewal and amendment process.

PERMITS BY RULE TO BE INCORPORATED

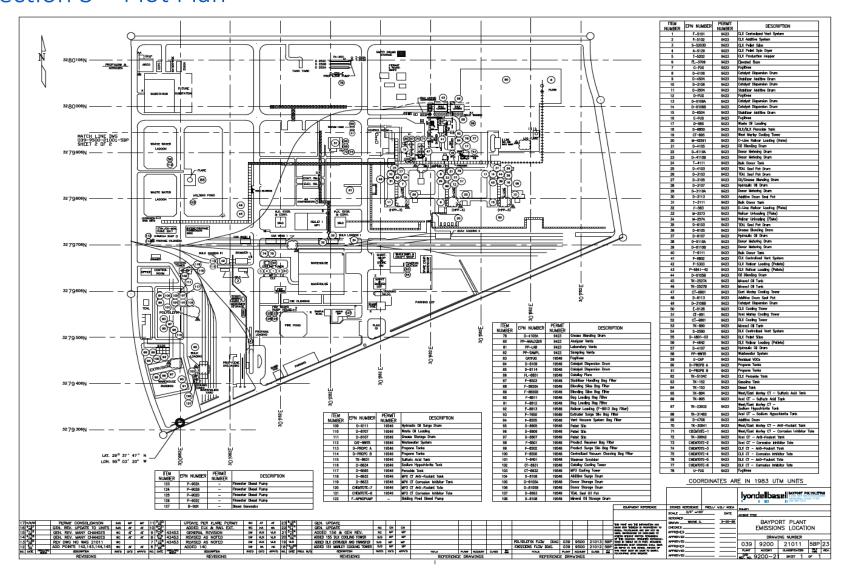
Registration No.	PBR	Date Complete	Incorporation Method
N/A	30 TAC §106.371 Cooling Water Units CLX Cooling Tower (formerly EPN: 150, new EPN: E-5128) Currently incorporated in NSR Permit No. 9423 Special Condition 36	Effective 03/14/1997 Amended 09/04/2000	By reference
N/A	30 TAC §106.472 Organic and Inorganic Liquid Loading and Unloading Diesel Storage Tank (EPN: TK-153)	Effective 03/14/1997 Amended 09/04/2000	By reference
N/A	30 TAC §106.472 Organic and Inorganic Liquid Loading and Unloading Two Sodium Hypochlorite Tanks (EPNs: TK-23632 and TK-31460)	Effective 03/14/1997 Amended 09/04/2000	By reference
N/A	30 TAC §106.472 Organic and Inorganic Liquid Loading and Unloading In addition to Corrosion Inhibitor and Anti- Foulant Totes/Tanks (EPNs: CHEMTOTE-1, CHEMTOTE-2, CHEMTOTE-3, CHEMTOTE-4, CHEMTOTE-5, CHEMTOTE-6, TK-30841, and TK-30842)	Effective 03/14/1997 Amended 09/04/2000	By reference
N/A	30 TAC §106.473 Organic Liquid Loading and Unloading Gasoline Storage Tank (EPN: TK-152)	Effective 03/14/1997 Amended 09/04/2000	By reference
N/A	30 TAC §106.511: Firewater Pumps (P-902A/B/D/E) and Back-up Emergency Generator (EPN: B-GEN)	Effective 03/14/1997 Amended 09/04/2000	By reference

Registration No.	PBR	Date Complete	Incorporation Method
N/A	30 TAC §106.472 Storage Tanks Two Sulfuric Acid Storage Tanks (EPNs: TK-884 and TK-895) The emissions associated with this PBR will be reflected in the proposed allowables in the MAERT. A BACT evaluation has been conducted as described in Section 8.	Effective 03/14/1997 Amended 09/04/2000	By consolidation
146105	30 TAC §106.261: Authorized fugitive changes. The emissions increases associated with this PBR will be reflected in the proposed allowables for the fugitive sources. A BACT evaluation has been conducted as described in Section 8.	05/24/2017	By consolidation
156193	30 TAC §106.261: Authorized fugitive changes. The emissions increases associated with this PBR will be reflected in the proposed allowables for the fugitive sources. A BACT evaluation has been conducted as described in Section 8.	04/19/2019	By consolidation
160781	30 TAC §106.261: Authorized fugitive changes. The emissions increases associated with this PBR will be reflected in the proposed allowables for the fugitive sources. A BACT evaluation has been conducted as described in Section 8.	04/15/2020	By consolidation

Last, there is a pending amendment to NSR Permit No. 9423 (project number 299187 "Add Emissions from Visbreaking") that is at the draft permit/final public notice stage and final permit issuance is expected soon. This renewal application has incorporated the changes authorized by that amendment as per the draft MAERT and the required analyses (Federal NSR review, BACT, air dispersion modeling, health effects review) for the sources in that amendment are not repeated in this renewal application.


This application includes all required components, documents, and analyses for this permit renewal and amendment.

2020 MAERT EPN AND SOURCE NAME CHANGES TABLE


Existing EPN	Existing Source Name	New EPN	New Source Name
14C	Pellet Transfer System	F-5101	CLX Centralized Vent System
30 + 34	LOG Flare (EPN 30) and Elevated Flare (EPN 34) LOG Flare and Elevated Flare MSS Activities	FL-3706	Elevated Flare
35	Fugitives	C-FUG	Fugitives
37	D-4106 Catalyst Unloading	D-4106	Catalyst Dispersion Drum
38	D-4504 Stabilizer Addition	D-4504	Stabilizer Additive Drum
39	D-3106 Catalyst Handling Drum	D-3106	Catalyst Dispersion Drum
40	D-3504 Stabilizer Additive Drum	D-3504	Stabilizer Additive Drum
41	Fugitives	D-FUG	Fugitives
50A	Catalyst Handling	D-6106A	Catalyst Dispersion Drum
50B	Catalyst Handling	D-6106B	Catalyst Dispersion Drum
51	Stabilizer Addition	D-6504	Stabilizer Additive Drum
52	Fugitives	E-FUG	Fugitives
98	D-885 Waste Oil Loading	D-885	Waste Oil Loading
99	West Marley Cooling Tower	CT-895	West Marley Cooling Tower
102	Railcar Loading/VOC Residual	M-42591	C-Line Railcar Loading (Flake)
103	D-4105 Oil and Grease Mixing	D-4105	Oil Blending Drum
104	D-4110A Donor Storage Drum	D-4110A	Donor Metering Drum
105	D-4110B Donor Storage Drum	D-4110B	Donor Metering Drum
106	TK-4111 Donor Storage Drum	T-4111	Bulk Donor Tank
107	D-4103 TEAL Seal Pot Drum	D-4103	TEAL Seal Pot Drum
109	D-3103 TEAL Seal Pot Drum	D-3103	TEAL Seal Pot Drum
110	D-3105 Oil and Grease Mixing	D-3105	Oil/Grease Blending Drum
111	D-3107 Hydraulic Oil Drum	D-3107	Hydraulic Oil Drum
112	D-3110A Donor Storage Drum	D-3110A	Donor Metering Drum
113	D-3110B Donor Storage Drum	D-3113	Additive Drum Seal Pot
114	TK-3111 Donor Storage Drum	T-3111	Bulk Donor Tank
116	Railcar Loading (Flake)	F-583	D-Line Railcar Loading (Flake)
120	M-574 Bag Filter	M-2573	Railcar Unloading (Flake)
122	M-2574 Bag Filter	M-2574	Railcar Unloading (Flake)
124	TEAL Seal Pot	D-6103	TEAL Seal Pot Drum
125	Oil and Grease Mixing	D-6105	Grease Blending Drum
126	Hydraulic Oil Drum	D-6107	Hydraulic Oil Drum
127	Donor Storage Drum	D-6110A	Donor Metering Drum

Existing EPN	Existing Source Name	New EPN	New Source Name
128	Donor Storage Drum	D-6110B	Donor Metering Drum
129	Donor Storage Drum	T-6111	Bulk Donor Tank
131	Pellet Transfer System	F-6802	ELX Centralized Vent System
132	Railcar Loading CLX	F-5303	CLX Railcar Loading (Pellets)
133	Railcar Loading ELX	F-6841-42	ELX Railcar Loading (Pellets)
135	Additive Surge Drum	D-6105B	Oil Blending Drum
143	Mineral Oil Tank	TK-2527A	CLX Mineral Oil Tank
144	Mineral Oil Tank	TK-2527B	CLX Mineral Oil Tank
146	East Marley Cooling Tower	CT-6901	East Marley Cooling Tower
147	Additive Storage	D-6113	Additive Drum Seal Pot
149	D-3106B Catalyst Handling Drum	D-3106B	Catalyst Dispersion Drum
151	Excel Marley 3 Cooling Tower	CT-891	Xcel Marley Cooling Tower
152	DLX Flake Transfer System	S-2580	DLX Centralized Vent System
153	DLX Pellet Silos	D-4801-03	DLX Pellet Silos
154	DLX Railcar Loading	F-4842	DLX Railcar Loading (Pellets)
155	DLX Cooling Tower	CT-4861	DLX Cooling Tower
156	D4107 Hydraulic Oil Drum	D-4107	Hydraulic Oil Drum
160	Mineral Oil Tank	T-880	Mineral Oil Tank

Section 2 Area Map

Section 3 Plot Plan

Section 4 Process Description

Equistar Chemicals, LP – Bayport Polymers Plant operates the Bulk Plant unit located in Pasadena, Texas in Harris County. The facility consists of three process units (C-Line, D-Line and E-Line) that produce polypropylene homopolymers and copolymers authorized under NSR Permit No. 9423. The detailed process information is considered confidential. Therefore, the complete process description is included and submitted in this application under a separate confidential section.

In general, the process involves polymerization of raw material monomers along with catalysts and cocatalysts. Raw material monomers used in the process include propylene, ethylene, and propane. Following polymerization, the polymer slurry is heated, and flash separation occurs for monomer recovery and remove residual hydrocarbons to stop further polymerization. The polymer product (flake) is then dried and transferred either directly to a railcar for sale or transferred to one of three pelletizing extruders. After the extruder, the polymer product (pellets) are dewatered, dried, classified, and transferred to a storage silo or directly to railcar loading.

Section 5 Process Flow Diagram

Section 6 Emission Calculations

This section presents a discussion of the basis for the air emission calculations associated with this concurrent renewal and amendment to NSR Permit No. 9423. The supporting emission calculations are provided in Appendix B which is being submitted as confidential information. The summary of emissions [former Table 1(a)] has been submitted using the electronic PI-1 General Application Workbook. Below is a description of the emissions calculation basis for each emission source/unit type, including complete emission factor references.

6.1 FLARE

Vent gases from C-Line, D-Line, and E-Line are routed to the steam-assisted Elevated Flare as a control device. Natural gas or propane can be used as assist (supplemental) gas for Btu control and to operate the flare pilots.

The Elevated Flare is continuously monitored according to the requirements of 30 TAC 115, Subchapter H (HRVOC) and is equipped with a flow meter and a gas chromatograph (GC) for speciation of the vent gas.

Depending on the product type and process conditions, the composition is continuously variable (i.e., up to 100% propylene, 100% ethylene, 100% propane, or any combination of these three monomers and various other VOCs and non-organic compounds). The calculations and representations used in this permit renewal and amendment are based on best available estimates and should not be considered absolute values for all operating scenarios.

Flare emissions may result from: vent gas from the activation of pressure relief devices specifically designed to direct gases from units during normal operations; venting from equipment as designed including but not limited to: control valves, pump seal pots, etc. during normal operations, maintenance, shutdown, or startup; vent gas resulting from the implementation of procedures specifically designed to direct gases from units during normal operations, maintenance, shutdown, or startup; and vent gas resulting from the automatic or manual activation of interlocks and process safety systems specifically designed to direct gasses from units during normal operations, maintenance, shutdown, or startup.

The flare does not have a bypass, with the exclusion that "bypass" does not include authorized analyzer vents, highpoint bleeder vents, low point drains, or rupture discs upstream of pressure relief valves if the pressure between the disc and relief valve is monitored and recorded at least weekly.

The hourly emission rates for the flare are variable with a lower limit for routine flaring and a higher limit allowed for maintenance, startup, and shutdown (MSS) activities. The annual emissions include all routine and MSS emissions. The emissions from the flare are estimated in accordance with the emission factors and calculation methodology specified in the *TCEQ New Source Review (NSR) Emission Calculations: Flares* and the *TCEQ Technical Supplement: Flares*.

VOC emissions are calculated using a 99% DRE per the manufacturer's representations and TCEQ guidance for the VOCs present in the process, maximum hourly, and annual vent gas flow rates to the flare in pounds/hour (lbs/hr) and tons per year (tpy).

CO and NO_x Emissions

CO and NO_x emissions from combustion are calculated based on the heating value from the vent gas streams to the flare and the applicable emission factors for steam-assisted flares. The higher of the CO and NO_x emission factors for low-Btu and high-Btu steam-assisted flares is used to calculate the emissions.

SO₂ Emissions

Emissions of SO₂ from the flares are attributed to the combustion of natural gas fuel. The hourly and annual emissions of SO₂ from the flare are based on 100% conversion of sulfur (based on the total sulfur content) in the natural gas fuel to SO₂.

PM Emissions

The flare will operate as a smokeless flare. Therefore, the emissions of particulate matter (PM) are negligible and are not required to be estimated.

6.2 FUGITIVES

VOC emissions from equipment-leak fugitives are calculated using the estimated number of actual components, the applicable emission factors, and control factors. The estimated emissions are using the calculation methodology in the *TCEQ Technical Guidance Package for Chemical Sources: Emission Factors for Equipment Leak Fugitives Components*. Components are monitored in accordance with the 28MID, 28CNTA, and 28PI Leak Detection and Repair (LDAR) programs.

6.3 PROCESS VESSELS

Vessels are utilized for in-process mixing and product preparations (i.e. catalyst, donor, liquid additives, solid additives, TEAL seal pots, and oil/grease drums) and have emissions from batch operations when vapor displacement occurs during vessel depressurization, material charges (filling), purging, and/or and heating.

VOC emissions are estimated from batch operations using engineering calculation methodologies (i.e. Ideal Gas Law, Raoult's Law). Particulate matter emissions (PM, PM₁₀, and PM_{2.5}) are estimated using the calculation methodology in *AP-42 Emission Factors*, *Chapter 9.9.1: Grain Elevators and Processes*.

6.4 STORAGE TANKS

AP-42 Emission Factors, Chapter 7: Liquid Storage Tanks is used to estimate the annual emissions from working and breathing losses from organic liquid storage tanks. Short-term maximum emissions are calculated using guidance from the TCEQ document "Estimating Short Term Emission Rates from Fixed Roof Tanks".

6.5 WASTEWATER

Wastewater emissions are calculated using ToxChem modeling that reflects the wastewater collection systems in the unit. The Toxchem model for the Bulk Plant unit was developed to account for discharges into individual C-Line, D-Line, and E-Line trench systems in the process areas and downstream extruder areas.

6.6 COOLING TOWERS

Three (3) cooling towers service hydrocarbon-containing process fluids for C-Line, D-Line, and E-Line. These cooling towers are monitored according to the requirements of 30 TAC 115, Subchapter H (HRVOC) with a continuous flow meter and a gas chromatograph (GC) for speciation of the cooling tower water. VOC emissions are estimated using the calculation methodology as stated in the *TCEQ Sampling Procedures Manual: Appendix P Cooling Tower Monitoring*.

Two (2) cooling towers service the CLX (authorized by PBR which is incorporated by reference) and DLX extrusion areas and do not service process fluids in hydrocarbon service.

PM emissions are estimated based on the established correlation factor between total dissolved solids (TDS) and conductivity while using the calculation methodology as stated in *AP-42 Emission Factors*, *Chapter 13.4: Wet Cooling Towers* and "Calculating Realistic PM10 Emissions from Cooling Towers" by Joel Reisman and Gordon Frisbie (2002) is used to speciate the PM₁₀ and PM_{2.5} emissions.

6.7 SAMPLING AND ANALYSIS VENTS

Analyzer Vents

VOC emissions are estimated using flow data, sample volumes, and engineering calculation methodologies. The NO_x and CO combustion emissions are estimated using the calculation methodologies specified in the TCEQ New Source Review (NSR) Emission Calculations: Flares and Vapor Combustors and TCEQ Technical Supplement: Flares.

Sampling Vents

VOC emissions are estimated using flow data, sample volumes, frequency, composition data, and engineering calculation methodologies.

6.8 RESIDUAL EMISSIONS

Residual VOCs and acetone are emitted to the atmosphere during polypropylene flake and pellet production from uncontrolled emission sources downstream of the dryers and associated with transfer, extrusion, storage, and loading operations from the three process lines (C-Line, D-Line, and E-Line). Additionally, there are certain products that require visbreaking to adjust the viscosity by the addition of organic peroxide at the extruders. Product immediately following the dryers (pre-visbreaking) and product downstream of the extruders (post-visbreaking) are sampled and analyzed to quantify the contaminant concentrations. The contaminant concentrations are quantified via headspace analysis, and the emissions from all three process lines are represented under one emissions cap.

Emissions are estimated using the calculation methodology as stated in the *TCEQ NSR Guidance Polyethylene & Polypropylene Manufacturing (2006)*. Parameters used in the calculations are based on AP-42/TCEQ emission factors, design data, operational data, and/or process knowledge.

Please note that there are blanks listed in the PI-1 General Application Workbook Unit Type-Emission Types Tab related to the sources that are part of the emission cap (EPN: E-CAP). These emissions are described as such to reflect their relevance to each polymer transfer, extrusion, and loading source as represented in the emission summary of the emissions calculations (and consistent with the current MAERT) in the Confidential section of this application package.

6.9 POLYMER HANDLING SOURCES

Particulate matter emissions (PM, PM₁₀, and PM_{2.5}) are estimated using the calculation methodology as stated in the *TCEQ NSR Guidance Polyethylene & Polypropylene Manufacturing (2006)*. Parameters used in the calculations are based on AP-42/TCEQ emission factors, design data, operational data, and/or process knowledge.

6.10 WASTE OIL LOADING

VOC emissions are estimated using the calculation methodology specified in AP-42 Emission Factors, Section 5.2 and TCEQ New Source Review (NSR) Emission Calculations for Loading Operations.

6.11 MAINTENANCE, STARTUP, AND SHUTDOWN (MSS)

Planned MSS activities can result in emissions to the Elevated Flare or the atmosphere. The MSS activities that are routed to the flare are monitored and calculated as stated on section 6.1 above. The MSS activities that result in emissions to the atmosphere are estimated using flow data, volumes, frequency, and engineering calculation methodologies.

Planned MSS activities associated with reactor dumps during reactor de-inventory activities, polymer blow-down collection vessels can result in particulate matter emissions to the atmosphere during the process of emptying the polymer to the dumpsters and pans. The material drop point equation from *AP-42 Emission Factors Section 13.2.4 dated 11/2006* is used to estimate the PM, PM₁₀, and PM_{2.5} emissions.

Planned MSS activities associated with vacuum cleaning systems that are used to maintain the operations/production areas can result in particulate matter emissions from the bag filters that control these vacuum cleaning systems. Particulate matter emissions (PM, PM₁₀, and PM_{2.5}) are estimated using the calculation methodology as stated in the *TCEQ NSR Guidance Polyethylene & Polypropylene Manufacturing (2006)*. Parameters used in the calculations are based on AP-42/TCEQ emission factors, design data, operational data, and/or process knowledge.

Section 7 Federal New Source Review Applicability Analysis

The Bayport Polymers Bulk Plant unit is located in Harris County, which has been designated as a serious nonattainment area for the 2008 eight-hour ozone standard and is in attainment with the National Ambient Air Quality Standards (NAAQS) for all other pollutants. Therefore, this project was evaluated for Prevention of Significant Deterioration (PSD) applicability as well as Nonattainment New Source Review (NNSR) for ozone emissions.

Equistar performed an evaluation of total emission increases included as part of the permit amendment portion of this concurrent renewal and amendment application. The sources included in this evaluation include:

- Existing analyzer vent that is considered "modified" due to adding additional analyzers and changing the emission calculation methodology that results in increased emissions;
- Six existing Process Vessels (five Catalyst Dispersion Drums and one Seal Pot) that are considered "modified" due to a change in the emissions calculation methodology that results in increased VOC emission rates:
- One existing Process Vessel (Stabilizer Additive Drum) to reflect the inclusion of newly identified particulate matter emissions;
- Seven existing permitted controlled Polymer Handling Sources that are considered "modified" due to revised flow rates that result in an increase of the annual emission rate limits including two existing EPNs that now include particulate matter emissions;
- Existing fugitive source that is considered "modified" due to an increase in emissions due to revised component counts;
- Four newly identified controlled Polymer Handling Sources;
- Two newly identified Process Vessels;
- Newly identified sampling vents; and
- Four newly identified MSS polymer management sources.

Baseline actuals data were obtained from the Annual Emissions Inventory (AEI) for the site as follows:

- CO baseline data are from 2018-2019;
- VOC baseline data from 2013-2014, except the full (existing) potential-to-emit (PTE) is used for EPN E-FUG;
- PM and PM₁₀ baseline data are from 2016-2017; and
- PM_{2.5} baseline data are from 2014-2015.

The project increase was determined as the difference between the proposed allowable for the modified and new sources and the baseline actuals data. Baseline is zero for new sources.

The details of this project increase analysis are included in Table 1F and Table 2Fs for CO, VOC, PM₁₀ and PM_{2.5} which are included in this section, the <u>Permit No. 9423 Renewal and Amendment Project Increase Table</u> which is included with the emissions calculations in the Confidential portion of this application, and the summary of the analysis is presented in the Federal Applicability worksheet of the associated and submitted PI-1 General Application Workbook. As the project emissions increases are less than the NNSR and PSD significance thresholds, federal NSR review does not apply.

TABLE 1F AIR QUALITY APPLICATION SUPPLEMENT

Permit No.: 9423	App	olication	n Subm	ittal Dat	e: June	2020			
Company: Equistar Chemicals, L.P.									
RN: 100216761	Faci	ility Lo	cation:	12001 H	Bay Are	a Blvd.			
City: Pasadena	Cou	ınty: Ha	ırris						
Permit Unit I.D.:	Perr	nit Nan	ne: Bul	k Plant l	Polypro	pylene I	Produc	tion U	nit
Permit Activity: New Source Modification	I								
Complete for all Pollutants with a Project Emission Increase.				P	OLLU'	FANTS			
		Oze	one						
		VOC	NOx	CO	PM ₁₀	PM _{2.5}	NOx	SO ₂	Other ¹
Nonattainment?		Yes	Yes	No	No	No	No	No	No
PSD?		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Existing site PTE (tpy)?		>100	<100	>100	<100	<100	<100	<100	<10
Proposed project emission increases (tpy from 2F ²)?		2.47	0	0.04	0.70	0.27	0	0	0
Is the existing site a major source?		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
If not, is the project a major source by itself?		No	No	No	No	No	No	No	No
If site is major source, is project increase significant?		No	No	No	No	No	No	No	No
If netting required, estimated start of construction: N/A									
5 years prior to start of construction N/A							conte	empora	aneous
Estimated start of operation N/A									period
Net contemporaneous change, including proposed project, from Table 3F. (tpy)		0	0	0	0	0	0	0	0
Major NSR Applicable?		No	No	No	No	No	No	No	No
Signature Carlisa Navy Title Sr. Env						/2020			
The representations made above and on the accompanying	g tabl	es are t	rue and	correct	to the b	est of m	ıy knov	wledge	.

Other pollutants. [Pb, H₂S, TRS, H₂SO₄, Fluoride excluding HF, etc.] ²Sum of proposed emissions minus baseline emissions, increases only.

Pollutant¹: CO Permit: 9423

Baseline Period: January 2018 to December 2019

A B

Aí	ffected or Modif FIN	ied Facilities ² EPN	Permit No.	Actual Emissions ³	Baseline Emissions ⁴	Proposed Emissions ⁵	Projected Actual Emissions	Difference (B-A) ⁶	Correction ⁷	Project Increase ⁸
1.	PP-ANALYZER	PP-ANALYZER	9423	0.005	0.005	0.045	N/A	0.04	0	0.04
2.										
3.										
4										
5.										
6.										
7.										
8.										
								Page Subotal ⁹	0	0.04
								Table Total	0	0.04

Pollutant⁹: VOC Permit: 9423

Baseline Period: January 2013 to December 2014

A

В

Ai	fected or Modif FIN	ied Facilities ¹⁰ EPN	Permit No.	Actual Emissions ¹¹	Baseline Emissions ¹²	Proposed Emissions ¹³	Projected Actual Emissions	Difference (B-A) ¹⁴	Correction ¹⁵	Project Increase ¹⁶
1.	E-FUG	E-FUG	9423	33.78	33.78	34.83	N/A	1.05	0	1.05
2.	D-3106	D-3106	9423	0.0100	0.0100	0.015	N/A	0.0053	0	0.0053
3.	D-3106B	D-3106B	9423	0.0050	0.0050	0.17	N/A	0.16	0	0.16
4	D-4106	D-4106	9423	0.0100	0.0100	0.26	N/A	0.25	0	0.25
5.	D-6106A	D-6106A	9423	0.0100	0.0100	0.20	N/A	0.19	0	0.19
6.	D-6106B	D-6106B	9423	0.0100	0.0100	0.20	N/A	0.19	0	0.19
7.	D-6113	D-6113	9423	0.0100	0.0100	0.060	N/A	0.050	0	0.050
8.	MSS41	MSS41	9423	0.0000	0.0000	0.15	N/A	0.15	0	0.15
9.	MSS42	MSS42	9423	0.0000	0.0000	0.15	N/A	0.15	0	0.15

Page Subtotal⁹ 0 2.21

Ai	ffected or Modi FIN	fied Facilities EPN	Permit No.	Actual Emissions	Baseline Emissions	Proposed Emissions	Projected Actual Emissions	Difference (B-A)	Correction	Project Increase
10.	MSS43	MSS43	9423	0.0000	0.0000	0.26	N/A	0.26	0	0.26
11.	D-4105A	D-4105A	9423	0.0000	0.0000	1.11E-06	N/A	1.11E-06	0	1.11E-06
12.	D-4706	D-4706	9423	0.0000	0.0000	1.63E-03	N/A	1.63E-03	0	1.63E-03
13	PP-SAMPL	PP-SAMPL	9423	0.0000	0.0000	4.18E-04	N/A	4.18E-04	0	4.18E-04
								Page Subtotal	0	0.26
								Table Total	0	2.47

Pollutant¹⁷: PM10 Permit: 9423

Baseline Period: January 2013 to December 2014

 \mathbf{A}

В

Af	fected or Modifi FIN	ied Facilities ¹⁸ EPN	Permit No.	Actual Emissions ¹⁹	Baseline Emissions ²⁰	Proposed Emissions ²¹	Projected Actual Emissions	Difference (B-A) ²²	Correction ²³	Project Increase ²⁴
1.	D-6504	D-6504	9423	0.0000	0.0000	0.00019	N/A	0.00019	0	0.00019
2.	M-42591	M-42591	9423	0.0000	0.0000	0.056	N/A	0.056	0	0.056
3.	F-583	F-583	9423	0.0000	0.0000	0.056	N/A	0.056	0	0.056
4	F-5303	F-5303	9423	0.0700	0.0700	0.23	N/A	0.16	0	0.16
5.	F-5102	F-5102	9423	0.0000	0.0000	0.045	N/A	0.045	0	0.045
6.	S-5203D	S-5203D	9423	0.0000	0.0000	0.35	N/A	0.35	0	0.35
7.	F-6801	F-6801	9423	0.0000	0.0000	0.011	N/A	0.011	0	0.011
8.	F-4801	F-4801	9423	0.0000	0.0000	0.012	N/A	0.012	0	0.012
9.	PP-SAMPL	PP-SAMPL	9423	0.0000	0.0000	0.0076	N/A	0.0076	0	0.0076

Page Subtotal¹⁷ 0 0.6965

Af	fected or Modi FIN	fied Facilities EPN	Permit No.	Actual Emissions	Baseline Emissions	Proposed Emissions	Projected Actual Emissions	Difference (B-A)	Correction	Project Increase
10.	MSS61	MSS61	9423	0.0000	0.0000	7.85E-05	N/A	7.85E-05	0	7.85E-05
11.	MSS62	MSS62	9423	0.0000	0.0000	7.85E-05	N/A	7.85E-05	0	7.85E-05
12.	MSS63	MSS63	9423	0.0000	0.0000	7.85E-05	N/A	7.85E-05	0	7.85E-05
13	MSS64	MSS64	9423	0.0000	0.0000	7.85E-05	N/A	7.85E-05	0	7.85E-05
								Page Subtotal	0	3.14E-04
								Table Total	0	0.70

Pollutant²⁵: PM2.5 Permit: 9423

Baseline Period: January 2014 to December 2015

A B

Aff	ected or Modifi FIN	ied Facilities ²⁶ EPN	Permit No.	Actual Emissions ²⁷	Baseline Emissions ²⁸	Proposed Emissions ²⁹	Projected Actual Emissions	Difference (B-A) ³⁰	Correction ³¹	Project Increase ³²
1.	D-6504	D-6504	9423	0.0000	0.0000	3.32E-05	N/A	3.32E-05	0	3.32E-05
2.	M-42591	M-42591	9423	0.0000	0.0000	0.028	N/A	0.028	0	0.028
3.	F-583	F-583	9423	0.0000	0.0000	0.028	N/A	0.028	0	0.028
4	F-5102	F-5102	9423	0.0000	0.0000	0.023	N/A	0.023	0	0.023

5.	PP-SAMPL	PP-SAMPL	9423	0.0000	0.0000	0.0038	N/A	0.0038	0	0.0038
6.	MSS61	MSS61	9423	0.0000	0.0000	1.19E-05	N/A	1.19E-05	0	1.19E-05

Continued on the next page

Equistar Chemicals, LP – Bulk Plant Polypropylene Production Unit NSR Permit 9423 Renewal and Amendment June 2020

7.	S-5203D	S-5203D	9423	0.0000	0.0000	0.18	N/A	0.18	0	0.18
8	F-6801	F-6801	9423	0.0000	0.0000	0.005	N/A	0.005	0	0.005
9.	F-4801	F-4801	9423	0.0000	0.0000	0.006	N/A	0.006	0	0.006
	Page Subtotal ¹								0	0.27

Af	fected or Modi FIN	fied Facilities EPN	Permit No.	Actual Emissions	Baseline Emissions	Proposed Emissions	Projected Actual Emissions	Difference (B-A)	Correction	Project Increase
10.	MSS62	MSS62	9423	0.0000	0.0000	1.19E-05	N/A	1.19E-05	0	1.19E-05
11.	MSS63	MSS63	9423	0.0000	0.0000	1.19E-05	N/A	1.19E-05	0	1.19E-05
12.	MSS64	MSS64	9423	0.0000	0.0000	9.78E-05	N/A	9.78E-05	0	9.78E-05
13										
	Page Subtotal								0	1.22E-04
Table Total								0	0.27	

Section 8 Best Available Control Technology (BACT)

TCEQ's NSR regulations [30 TAC §116.111(a)(2)(C)] require that Best Available Control Technology (BACT) be evaluated for new and physically modified facilities for pollutants that do not trigger PSD or NNSR review. Because this project is not triggering federal review for any pollutants, a federal BACT analysis is not required.

The new and modified sources included in the BACT evaluation for this concurrent renewal and amendment application include:

- Existing analyzer vent that is considered "modified" due to adding additional analyzers and changing the emission calculation methodology;
- Six existing Process Vessels (five Catalyst Dispersion Drums and one Seal Pot) that are considered "modified" due to a change in the emissions calculation methodology that results in increased VOC emission rates;
- One existing Process Vessel (Stabilizer Additive Drum) to reflect the inclusion of newlyidentified particulate matter emissions;
- Seven existing permitted controlled Polymer Handling Sources that are considered "modified" due to revised flow rates that result in an increase of the annual emission rate limits including two existing EPNs that now include particulate matter emissions;
- Existing fugitive source that is considered "modified" due to an increase in emissions due to revised component counts. The incorporation by consolidation of three PBRs (Registration Nos.: 146105, 156193, and 160781) that authorized fugitive emissions increases is also addressed;
 - Four newly identified controlled Polymer Handling Sources;
 - Two newly identified Process Vessels;
 - Newly identified sampling vents;
 - Newly identified MSS polymer management sources; and
 - Storage tanks previously authorized by PBR.

Additionally, the PI-1 General Application Workbook includes a review of existing, "renewal only" sources to ensure that these sources meet requirements that are "...economically reasonable and technically practicable give the age of the facility and the impacts of its emissions..."

The results of this BACT evaluation are included in the BACT worksheet of the associated and submitted PI-1 General Application Workbook.

Section 9 Regulatory Applicability Review

8.1 TEXAS ADMINISTRATIVE CODE (TAC) TITLE 30

As described in this section, the Bulk Plant unit will comply with all air quality rules and regulations of the TCEQ and with the intent of the Texas Clean Air Act, including protection of the health and physical property of the public. The following Texas rules have been assessed for applicability to the emission sources regarding this renewal and amendment. The regulatory applicability review below is for the entire plant with consideration for the new units.

i. CHAPTER 39 - PUBLIC NOTICE

Air quality permit applications or registrations that are declared administratively complete by the Executive Director on or after September 1, 1999 are subject to this subchapter. Therefore, this renewal and amendment application will comply with the notice requirements. Additionally, upon receipt of written notice from the TCEQ Executive Director, Equistar will provide public notice of the application for permit renewal in accordance with this chapter.

ii. CHAPTER 101 - GENERAL RULES

The Bulk Plant unit will be operated according to the General Rules relating to circumvention, nuisance, traffic hazards, notification requirements for emissions events, notification requirements for scheduled maintenance/startup/shutdowns, sampling, sampling ports, emissions inventory requirements, sampling procedures and terminology, compliance with Environmental Protection Agency Standards, the National Primary and Secondary Air Quality Standards, inspection fees, emissions fees, and all other applicable General Rules.

iii. CHAPTER 106 – PERMITS BY RULE

The Bulk Plant unit previously identified authorized changes under the PBR requirements of 30 TAC §106. Those registered PBRs that will be incorporated in this permit renewal and amendment are listed in Section 1 - Project Information. PBR 30 TAC §106.433 and 106.452: Painting and Abrasive Blasting Facility (registration number 110593, completed 06/20/2013) will not be incorporated in this permit renewal and amendment as it a PBR authorizing sitewide activities associated with other permits in addition to NSR Permit No. 9423.

iv. CHAPTER 111 - CONTROL OF AIR POLLUTION FROM VISIBLE EMISSIONS AND PARTICULATE MATTER

The operation of several material handling sources at the Bulk Plant unit may result unit in occasional visible emissions, but they will not exceed the opacity limits specified in 30 TAC §111.111(a). PM emission rates from these sources will be less than the allowable limits outlined in 30 TAC §111.151.

v. CHAPTER 112 - CONTROL OF AIR POLLUTION FROM SULPHUR COMPOUNDS

The maximum ground level SO_2 concentration due to the SO_2 emissions at the site is expected to be below the limits specified in 30 TAC §112.3.

vi. CHAPTER 113 - CONTROL OF AIR POLLUTION FROM TOXIC MATERIALS

Chapter 113 regulates the emissions of radon from phosphogypsum stacks (40 CFR Part 61, Subpart R), hazardous air pollutants for source categories (40 CFR Part 63), designated facilities (municipal solid waste landfills and hospital/medical/infectious waste incinerators), and consolidated federal air rule SOCMI sources (40 CFR Part 65). There are no sources at the Bulk Plant unit that are subject to any of these standards.

vii. CHAPTER 114 - CONTROL OF AIR POLLUTION FROM MOTOR VEHICLES

The Bulk Plant unit will comply with applicable provisions of this regulation for motor vehicles operated at the plant, including maintenance and operation of air pollution control systems or devices and inspection requirements.

viii. CHAPTER 115 - CONTROL OF AIR POLLUTION FROM VOLATILE ORGANIC COMPOUNDS

This regulation requires control of VOC emissions from general sources, transfer operations, petroleum refining sources, natural gas processes, petrochemical processes, solvent-using processes, miscellaneous industrial sources, and consumer-related sources. The Bulk Plant unit is located in Harris County which is designated as serious ozone nonattainment and will comply with the applicable control, recordkeeping, reporting, and monitoring requirements.

ix. CHAPTER 116 - CONTROL OF AIR POLLUTION BY PERMITS FOR NEW CONSTRUCTION OR MODIFICATION

The Texas Administrative Code (TAC) Title 30, Chapter 116, Subchapter B requires permit applicants to submit information to demonstrate compliance with Federal Regulations and the Texas Clean Air Act (TCAA). 30 TAC §116, Subchapter D requires permit holders to submit information in support of the application to be granted a permit renewal. This section provides a summary demonstration that the emission units associated with this permit application will meet these requirements.

§116.111(a)(2)(A)(i) - Protection of Public Health and Welfare

The emissions from the Bulk Plant unit will comply with all rules and regulations of the commission and with the intent of the Texas Clean Air Act (TCAA), including protection of the health and property of the public.

§116.111(a)(2)(A)(ii)

There are no schools located within 3,000 feet of the Bulk Plant unit. Therefore, 116.111(a)(2)(A)(ii), which requires verification that the emissions from the facility will not result in any short-term or long-term side effects or nuisance odors upon any individual attending a school within 3,000 feet of the facility, does not apply.

§116.111(a)(2)(B) - Measurement of Emissions

The Bulk Plant unit will have provisions for measuring the emission of significant air contaminants to comply with source stack testing requirements as determined by the TCEQ.

§116.111(a)(2)(C) - Best Available Control Technology

The Bulk Plant unit will use the best available control technology with consideration given to the technical practicality and economic reasonableness of reducing or eliminating emissions from the new and modified sources as well as sources that are being renewed only as detailed in the TCEQ NSR PI-1 General Application Workbook.

§116.111(a)(2)(D) - New Source Performance Standards (NSPS)

The emissions from the Bulk Plant unit will meet the requirements of any applicable NSPS as listed under Title 40 Code of Federal Regulations (CFR) Part 60, promulgated by the EPA under FCAA, §111, as amended. Specifically, NSPS Subpart A, Subpart DDD, and Subpart VV are applicable to C, D, and E-Line process lines. The Bulk Plant unit will comply with all applicable control, recordkeeping, reporting, and monitoring requirements contained in these regulations.

§116.111(a)(2)(E) - National Emission Standards for Hazardous Air Pollutants

There are no sources subject to Part 61 National Emission Standards for Hazardous Air Pollutants (NESHAP), therefore these regulations do not apply.

§116.111(a)(2)(F) - NESHAP for Source Categories

The emissions from the Bulk Plant unit will meet the requirements of any applicable maximum achievable control technology standard as listed under 40 CFR Part 63, promulgated by the EPA under FCAA, §112 or as listed under Chapter 113, Subchapter C of this title (relating to National Emissions Standards for Hazardous Air Pollutants for Source Categories (FCAA §112, 40 CFR 63)). MACT Subpart A and Subpart FFFF are applicable to C, D, and E-Line process lines. The Bulk Plant unit will comply with all applicable control, recordkeeping, reporting, and monitoring requirements.

§116.111(a)(2)(G) - Performance Demonstration

The sources at the Bulk Plant unit will achieve the performance specified in the permit application. The applicant may be required to submit additional engineering data after a permit has been issued in order to demonstrate further that the proposed facility will achieve the performance specified in the permit application. In addition, dispersion modeling, monitoring, or stack testing may be required. The sources presented in this application will perform as represented. Source emissions will not exceed the rates represented in the "Unit Types – Emission Rates" tab in the PI-1 General Application Workbook.

§116.111(a)(2)(H) - Nonattainment Review

The Bulk Plant unit is located in Harris County, which is classified as nonattainment for the 2008 eight-hour ozone standard and is in attainment with the National Ambient Air Quality Standards (NAAQS) for all other pollutants. As shown in Section 7 and in the Federal Applicability worksheet of the TCEQ NSR PI-1 Permitting General Application Workbook, the total project increases for NO_x and VOC associated with this project are below the significance level for a serious nonattainment area; therefore, NNSR review is not triggered for these pollutants.

§116.111(a)(2)(I) - Prevention of Significant Deterioration (PSD) Review

The Bulk Plant unit is located in Harris County, which is classified as nonattainment for the 2008 eight-hour ozone standard and is in attainment with the National Ambient Air Quality Standards (NAAQS) for all other pollutants. As shown in Section 7 and in the Federal Applicability worksheet of the TCEQ NSR PI-1 Permitting General Application Workbook, the total project increases for CO, VOC, PM, PM₁₀ and PM_{2.5} associated with this project are below the significance level for these pollutants; therefore, PSD review is not triggered for these pollutants. There are no other pollutants with increases to the proposed allowable emission rate limits.

§116.111(a)(2)(J) - Air Dispersion Modeling

Computerized air dispersion modeling may be required by the executive director to determine air quality impacts from a proposed new facility or source modification. In determining whether to issue, or in conducting a review of, a permit application for a shipbuilding or ship repair operation, the commission will not require and may not consider air dispersion modeling results predicting ambient concentrations of non-criteria air contaminants over coastal waters of the state. The commission shall determine compliance with non-criteria ambient air contaminant standards and guidelines at land-based off-property locations.

The Bulk Plant unit has provided air dispersion modeling, described in Section 10, to satisfy this requirement.

§116.111(a)(2)(K) - Hazardous Air Pollutants (HAPs)

Affected sources (as defined in §116.15(1) of this title (relating to Section 112(g) Definitions)) for hazardous air pollutants shall comply with all applicable requirements under Subchapter E of this chapter (relating to Hazardous Air Pollutants: Regulations Governing Constructed or Reconstructed Major Sources (FCAA, §112(g), 40 CFR Part 63)). Please note that the sources included in this application do not meet the definition of affected source as defined in §116.15(1) and §116.400(a); therefore, this section does not apply.

§116.111(a)(2)(L) - Mass Cap and Trade Allowances

The Bulk Plant unit is subject to Chapter 101, Subchapter H, Division 3, of this title (relating to Mass Emissions Cap and Trade Program) and has obtained the necessary allowances to operate. No additional allowances are expected to be required for this renewal and amendment.

Section 10 Modeling Analysis

The Bulk Plant unit has provided air dispersion modeling to demonstrate compliance with the minor NSR NAAQS, TCEQ state property line standards, the TCEQ's Modeling and Effects Review Applicability (MERA) guidance, and the TCEQ's Air Quality Modeling Guidelines. The modeling inputs and outputs are summarized in the TCEQ's Electronic Modeling Evaluation Workbook (EMEW). The EMEW and modeling files are provided electronically for review by TCEQ's Air Dispersion Modeling Team.

MERA Step 2 was used to demonstrate that proposed increases of grease, isobutene, butane, pentane, and hexane are de minimis. The following table shows that the criteria for MERA Step 2 are satisfied for each of these pollutants.

Pollutant	CAS#	Short-Term Increase (lb/hr)	Short-Term ESL (μg/m³)	Long-Term ESL (μg/m³)
Grease	Not Found	0.00013	1000	100
Isobutene	115-11-7	0.06	180000	32000
Butane	106-97-8	0.012	66000	7100
Pentane	109-66-0	0.0047	59000	7100
Hexane	Railcar Loading ELX	0.053	6200	200

MERA Step 6 was used to demonstrate acceptable impacts for 1-hour mineral oil. MERA Step 6 states that if the ratio of the maximum predicted impact from project increases (GLCmax) and the ESL is less than or equal to the ratio of the increased emissions and proposed sitewide emissions, then the MERA analysis is complete. The GLCmax for 1-hour mineral oil is $138.18~\mu g/m^3$ and the ESL is $1000~\mu g/m^3$. The resulting GLCmax/ESL ratio is 0.138. The increased emissions total 9.88 lb/hr and the proposed sitewide emissions of mineral oil total 13.01~lb/hr. The resulting emissions ratio is 0.759. Since the GLCmax/ESL ratio is less than the emissions ratio, MERA Step 6 is satisfied, and sitewide modeling is not required to demonstrate acceptable impacts for 1-hour mineral oil.

by Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Form PI-1 General Application

Version 4.0 - 400 FINs

This workbook is a tool available for almost all action types for case-by-case NSR permits (see list below) to streamline the review process. Note: This workbook is required for all applications received on or after June 1, 2019.

Please check our website to be sure you use the latest version of the workbook for all the features and accurate information.

Complete the workbook in order of the sheets. Responses and data entered on previous sheets are used throughout the following sheets.

Questions? Contact the Air Permits Division at (512) 239-1250

Types of Permits and Actions Included

The following permit and actions types are included in the Form PI-1 General Application. Using it will streamline the review process and is highly encouraged. Note: This workbook is required for all applications listed below received on or after June 1, 2019.

Permit Type	Action Type	
NSR Minor Permit (can be a Title V major		
source)	Initial	
	Amendment	
	Renewal	
	Renewal Certification	
	Renewal/Amendment	
	Change of location	
	Relocation	
	Alteration	
	Extension to Start of Construction	
Special Construction Permit	Amendment	
	Renewal	
	Renewal Certification	
	Renewal/Amendment	
	Alteration	
	Extension to Start of Construction	
De Minimis	Initial	
Flexible Permit	Initial	
	Amendment	
	Renewal	
	Renewal Certification	
	Renewal/Amendment	
	Alteration	
	Extension to Start of Construction	
PSD	Initial	
	Major Modification	
GHG PSD	Initial	
	Major Modification	
	Voluntary Update	
Nonattainment	Initial	
	Major Modification	
HAP (112 g)	Initial	
· • • • • • • • • • • • • • • • • • • •	Major Modification	
PAL	Initial	
	Amendment	
	Renewal	
	Renewal/Amendment	
	Alteration	

Version 4.0 Cover

Texas Commission on Environmental Quality Form PI-1 General Application Company Name: Equistar Chemicals, L.P.

Cover

Date: June 2, 2020 Permit #: 9423

Types of Permits and Actions Indirectly Included

These permit types are past the due dates for submitting initial projects. Renewals, amendments, and alteration projects can be submitted and follow the same requirements for the "NSR Minor Permits" listed above (Subchapter D for renewals and Subchapter B for amendments and alterations.) There are no specific questions using the terms below, i.e. no question "Is this a grandfathered facility?" Using the Form PI-1 General Application for these projects will streamline the review process and is highly encouraged. Note: This workbook is required for all applications listed below received on or after June 1, 2019.

Grandfathered Facilities	Amendment
Chapter 116, Subchapter H	Alteration
	Renewal
Electric Generating Facility	Amendment
Chapter 116, Subchapter I	Alteration
	Renewal
Permits for Specific Designed Facilities	Amendment
Chapter 116, Subchapter L	Alteration
	Renewal

Types of Permits and Actions Not Included

The following permit and actions types are not included in the Form PI-1 General Application. Submit these project types in accordance with the applicable rules and guidance. Many of these projects are required to be submitted through STEERS.

https://www3.tceq.texas.gov/steers/

Standard Permit Registrations (Chapter 116, Subchapter F)

Permit by Rule Registration and Certification (Chapter 106)

Federal Operating Permits (Chapter 122)

Multiple Plant Permits (Chapter 116, Subchapter J)

NSR Permit Qualified Facility Changes (30 TAC § 116.116(e))

NSR Permit Alternate Means of Compliance (AMOC) (Chapter 115, Subchapter J)

To Submit:

- 1. Complete all required sections leaving no blanks unless the question is optional. You may use the "tab" button or the arrow keys to move to the next available cell. Use "enter" to move down a line. Note: dropdowns are case-sensitive.
- 2. Sections of the workbook which are not applicable for this project will be blocked out as data is entered. For example, answering "No" to "Is this a project for a concrete batch plant?" will remove sections of the workbook required only for concrete batch plants. Note: if you can see the sheet title, there are questions applicable to your project on that
- 3. Follow the directions below to create the required workbook header.
- 4. The preferred method for submitting NSR application materials is through STEERS as an ePermit application. When submitting through STEERS:
 - A. An original signature is not needed.
 - B. The system notifies the appropriate regional office and local program of the application materials. You do not need to send anything submitted through STEERS.
 - C. You do still need a hard copy for the public place if notice is required and for other applicable program areas listed on the Copies sheet, such as Federal Land Managers.
 - D. You can submit attachments with the original submittal.
 - E. Confidential information can be submitted without encryption.
- 5. The PI-1 can also be submitted through email. Email the workbook electronic file to the Air Permits Initial Review Team. The subject line should read "Company Name_Permit Number (don't include if unknown)_NSR Permit Application". The file name should be: Date ApplicationWorkbook Company name Permit number (YYYYMMDD Application Workbook Company Permit#). Email address:

apirt@tceq.texas.gov

Version 4.0 Cover

Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

- 5. Print and sign the "General" sheet if the workbook indicates that an original signature is required. Some projects do not require an original signature and that section will be blocked out. Note, this is the only part of this workbook that is needed by the Air Permits Division as a hard copy. If submitting through STEERS, this step is not required.
- 6. Follow the guide on the "Copies" guidance sheet for where to mail the application materials.
- 7. Do not begin construction until notified by the TCEQ. If the facility is already operating, an air authorization is still needed. Seek an authorization as soon as you become aware that this requirement applies.
- 8. Updates may be required throughout the review process. Updated workbooks can be submitted electronically. Be sure to change the headers accordingly.

Renewal Projects: Send the application to the TCEQ at least six months but no earlier than 18 months prior to permit expiration. A renewal application may accompany a permit amendment application if the permit is within three years of its expiration date and if the permit amendment is subject to public notice requirements. Facility operation may continue as long as the application and fee are received within the specified deadlines.

Consolidating a Permit within 6 years of expiration requires a Form PI-1 General Application and fee for each permit and will require Public Notice.

If you are requesting to split one permit into multiple (move FINs from Permit A to Permit B):

- 1. Submit two applications: one as an amendment to Permit A to remove the sources and one as an initial project to create Permit B.
- 2. The Permit A amendment application should contain all the FIN's from the current permit. Those moving to Permit B should be listed as "remove" in column A of the "Unit Types Emission Rates" sheet.
- 3. The Permit B initial application should list all the sources to be in the new permit. Those moving from Permit A should be listed as "not new/modified" in column A of the "Unit Types Emission Rates" sheet (unless you are also requesting changes to those FINs).

To Submit Other Application Materials:

APD's preference is to receive all application attachments electronically through STEERS, email, or FTP. When submitting electronically, hard copy courtesy copies are not needed by APD. Here are some tips:

- Submit all attachments through STEERS as part of your ePermit application or submit the attachments with your email to APIRT with your Form PI-1 General Application.
- Submit all workbook files as an electronic workbook (such as Excel) with all formulas viewable for review (rather than a PDF, for example).
- 3. For files that are too large to submit via email, files can be shared with Air Permits through a secure FTP. You will need to upload the files into the TCEQ FTPs and share the files with APIRT@tceq.texas.gov. Once your project has been assigned, contact your permit reviewer to set up an FTP.
- 4. If submitting hard copy originals, reference the date and email subject of the PI-1 submittal email.
- 5. **Confidential files** should be submitted through STEERS, as encrypted files through email or FTP, as a confidential hardcopy, or as a confidential disc or flash drive. All pages must be marked confidential and have confidential in the file name. Confidential submittals must be separate from non-confidential application materials.

Please note that emails sent to the agency are not encryption protected via Secure Sockets Layers by our server and may be subject to interception by common third-party internet tools. Anything marked as confidential will be treated as such by APD staff upon receipt.

See the below link for additional information about submitting via FTP: https://ftps.tceg.texas.gov/help/

Create Headers:

- 1. Right-click one of the workbook's sheet tabs and "Select All Sheets."
- 2. Enter the "Page Layout View" by using the navigation ribbon's View > Workbook Views > Page Layout, or by clicking the page layout icon in the lower-left corner of Excel.
- 3. Add the date, permit number (if known), and company name to the upper-right header. Note that this may take up to a minute to update your spreadsheet. Use a second line if the company name is more than 30 characters.

Version 4.0 Cover

by Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Printing Tips:

While APD does not need a hard copy of the full workbook (only the General sheet), you may need to print it for sending to the regional offices, local programs, and for public access if notice is required.

- 1. Do not print any sheets or pages without data entry. For example, do not print the renewal sheet if you are not submitting a renewal project. Also, do not print the entire Unit Types-Emission Rates sheet, only the pages showing the data you have entered.
- 2. The default printing setup for each sheet in the workbook is set for all columns on one sheet of paper. This will make the printout easier to review for future reference. We have also set the print areas to not include the instructions on each sheet.
- 3. You have access to change all printing settings to fit your needs and printed font size. Some common options include:
 - -Change what area you are printing (whole active sheet or a selection);
 - -Change the orientation (portrait or landscape);
 - -Change the margin size;
 - -Change the scaling (all columns on one sheet, full size, your own custom selection, etc.).

Application Materials		
<u>General</u>	General Information for Initial, Amendment, and Change of Location Projects	
Renewals Programme Renewals	General Information for Renewal Projects	
<u>Technical</u>	Technical Information for Initial, Amendment, and Change of Location Projects	
<u> </u>	Table 1(a) example entries	
Unit Types - Emissions Rates	Detailed information for units in this permit, including unit type, EPNs, current and proposed emission rates	
Flex Permits	Indicates capped pollutants and the cap contributions of each FIN for flexible permits	
Stack Parameters	Stack parameter information for each EPN in this permit	
Public Notice	Public Notice Applicability, Required Information, and Small Business Classification	
Federal Applicability	A summary of PSD, GHG PSD, and nonattainment applicability	
<u>ees</u>	Estimated Capital Cost and Fee Verification	
<u>mpacts</u>	Summary sheet of the impacts analysis conducted for this project	
BACT CONTRACT	Minimum Tier I BACT requirements are listed, additional information may be required	
<u> Monitoring</u>	Minimum monitoring requirements are listed, additional information may be required	
<u>Materials</u>	List of application materials attached to this application workbook	
	ook (these do not need to be printed with your application)	
<u>Copies</u>	Requirements for submitting the original and copies of the complete application	
Glossary	Key terms and additional instructions for completing this workbook	
<u>Acronyms</u>	Key to acronyms used throughout this workbook	
<u>Unit Types</u>	List of unit types included in this workbook	
Blank Table	A blank Unit Types-Emission Rates sheet to help you organize your list of sources.	
Summary	A summary sheet of the project	

Version 4.0 Cover

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

I. Applicant Information

I acknowledge that I am submitting an authorized TCEQ application workbook and any necessary attachments. Except for inputting the requested data and adjusting row height and column width, I have not changed the TCEQ application workbook in any way, including but not limited to changing formulas, formatting, content, or protections.

I agree

A. Company Information

Company or Legal Name:

Equistar Chemicals, L.P.

Permits are issued to either the facility owner or operator, commonly referred to as the applicant or permit holder. List the legal name of the company, corporation, partnership, or person who is applying for the permit. We will verify the legal name with the Texas Secretary of State at (512) 463-5555 or at:

https://www.sos.state.tx.us

Texas Secretary of State Charter/Registration Number (if given):

B. Company Official Contact Information: must not be a consultant

1r. nthony
•
Vood
ite Manager
0801 Choate Roade
asadena
X
7507
81-474-0436
nthony.wood@lyb.com
it 0 7 8

C. Technical Contact Information: This person must have the authority to make binding agreements and representations on behalf of the applicant and may be a consultant. Additional technical contact(s) can be provided in a cover letter

in a cover letter.	
Prefix (Mr., Ms., Dr., etc.):	Ms.
First Name:	Carlisa
Last Name:	Navy
Title:	Sr. Environmental Enginner
Company or Legal Name:	LyondellBasell Industries N.V.
Mailing Address:	10801 Choate Roade
Address Line 2:	
City:	Pasadena
State:	TX
ZIP Code:	77507
Telephone Number:	281-474-0727
Fax Number:	
Email Address:	Carlisa.Navy@lyondellbasell.com
D A ' IN I	

D. Assigned Numbers

The CN and RN below are assigned when a Core Data Form is initially submitted to the Central Registry. The RN is also assigned if the agency has conducted an investigation or if the agency has issued an enforcement action. If these numbers have not yet been assigned, leave these questions blank and include a Core Data Form with your application submittal. See Section VI.B. below for additional information.

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Enter the CN. The CN is a unique number given to each business, governmental body, association, individual, or other entity that owns, operates, is responsible for, or is affiliated with a regulated entity.	CN600124705
Enter the RN. The RN is a unique agency assigned number given to each person, organization, place, or thing that is of environmental interest to us and where regulated activities will occur. The RN replaces existing air account numbers. The RN for portable units is assigned to the unit itself, and that same RN should be used when applying for authorization at a different location.	RN100216761

II. Delinquent Fees and Penalties

Does the applicant have unpaid delinguent fees and/or penalties owed to the TCEQ? This form will not be processed until all delinquent fees and/or penalties owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ are paid in accordance with the Delinquent Fee No and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at:

https://www.tceq.texas.gov/agency/financial/fees/delin

III. Permit Information

A. Permit and Action Type (multiple may be selected, leave no blanks)

Additional information regarding the different NSR authorizations can be found at:

https://www.tceg.texas.gov/permitting/air/guidance/authorize.html

Select from the drop-down the type of action being requested for each permit type. If that permit type does not apply, you MUST select "Not applicable".

Provide all assigned permit numbers relevant for the project. Leave blank if the permit number has not yet been assigned.

Permit Type	Action Type Requested	Permit Number (if assigned)
	(do not leave blank)	
Minor NSR (can be a Title V major source): <i>Not</i> applicable, <i>Initial, Amendment, Renewal, Renewal Certification, Renewal/Amendment,</i> Relocation/Alteration, Change of Location, Alteration, Extension to Start of Construction	Renewal/Amendment	9423
Special Permit: Not applicable, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
De Minimis: Not applicable, Initial	Not applicable	
Flexible: Not applicable, Initial, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
PSD: Not applicable, Initial, Major Modification	Not applicable	
Nonattainment: <i>Not applicable, Initial, Major</i> <i>Modification</i>	Not applicable	

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

HAP Major Source [FCAA § 112(g)]: <i>Not</i> applicable, Initial, Major Modification	Not applicable			
PAL: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration	Not applicable			
GHG PSD: Not applicable, Initial, Major Modification, Voluntary Update	Not applicable			
Woullcation, Voluntary Opuate				
B. MSS Activities	Ī			
How are/will MSS activities for sources associated with this project be authorized?	Combination (list	t below)		
List the permit number, registration number, and/or		Permit N	lo. 9423	
PBR number.	PBR Reg. N	o. 110593 for Pa	inting and Abras	ive Blasting.
C. Consolidating NSR Permits				
Will this permit be consolidated into another NSR pe	ermit with this act	ion?		No
	T			
Will NSR permits be consolidated into this permit wi	th this action?			No
D. Incorporation of Standard Dermite, Standard Evernations, and/or Dermite Dy Dule (DDD)				
D. Incorporation of Standard Permits, Standard Exemptions, and/or Permits By Rule (PBR) To ensure protectiveness, previously issued authorizations (standard permits, standard exemptions, or PBRs)				
including those for MSS, are incorporated into a permit either by consolidation or by reference. At the time of renewal				
and/or amendment, consolidation (in some cases) may be voluntary and referencing is mandatory. More guidance				
regarding incorporation can be found in 30 TAC § 116.116(d)(2), 30 TAC § 116.615(3) and in this memo:				
https://www.tceq.texas.gov/assets/public/permitting/	/air/memos/pbr_s	pc06.pdf		
Are there any standard permits, standard exemptions, or PBRs to				
pe incorporated by reference?				

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

If yes, list any PBR, standard exemptions, or standard permits that need to be referenced:	30 TAC §106.511: Firewater Pumps (P-902A/B/D/E) and Back-up Emergency Generator, 30 TAC §106.371 Cooling Water Units (CLX Cooling Tower), 30 TAC §106.472 Organic and Inorganic Liquid Loading and Unloading (Diesel Storage Tank), 30 TAC §106.472 Organic and Inorganic Liquid Loading and Unloading (Two Sodium Hypochlorite Tanks), 30 TAC §106.472 Organic and Inorganic Liquid Loading and Unloading regarding additional Corrosion Inhibitor and Anti-Foulant Totes/Tanks, and 30 TAC §106.473 Organic Liquid Loading and Unloading (Gasoline Storage Tank) were all effective 03/14/1997 and amended in 09/04/2000.
Are there any PBR, standard exemptions, or standard permits associated to be incorporated by consolidation? Note: Emission calculations, a BACT analysis, and an impacts analysis must be attached to this application at the time of submittal for any authorization to be incorporated by consolidation.	Yes
If yes, list any PBR, standard exemptions, or standard permits that need to be consolidated:	PBR Reg. No. 156193 for fugitive changes; PBR Reg. No. 146105 for fugitive changes: PBR Reg. No. 160781 for fugitive changes, and 30 TAC §106.472 Storage Tanks (Two Sulfuric Acid Storage Tanks),
If yes, are emission calculations, BACT analysis, and an impacts analysis included for each authorization to be consolidated? If any required information is not provided, the authorization will be incorporated by reference.	Yes
E. Associated Federal Operating Permits	
Is this facility located at a site required to obtain a site operating pepermit (GOP)?	rmit (SOP) or general operating Yes
Is a SOP or GOP review pending for this source, area, or site?	No
If required to obtain a SOP or GOP , list all associated permit number(s). If no associated permit number has been assigned yet, enter "TBD":	

IV. Facility Location and General Information		
A. Location		
County: Enter the county where the facility is physically located.	Harris	
TCEQ Region	Region 12	
County attainment status as of Sept. 23, 2019	Serious Ozone nonattainment	

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

General Company Name: Equician Chemicale, 2.1			
Street Address:	12001 Bay Area Blvd.		
City: If the address is not located in a city, then			
enter the city or town closest to the facility, even if it	Pasadena		
is not in the same county as the facility.			
ZIP Code: Include the ZIP Code of the physical			
facility site, not the ZIP Code of the applicant's	77507		
mailing address.			
Site Location Description: If there is no street			
address, provide written driving directions to the			
	Not applicable		
from well-known landmarks such as major highway			
intersections.			
	as Department of Transportation, or an online software application		
such as Google Earth to find the latitude and longitu	de.		
Latitude (in degrees, minutes, and nearest second			
(DDD:MM:SS)) for the street address or the			
destination point of the driving directions. Latitude	29 37' 54" N		
is the angular distance of a location north of the			
equator and will always be between 25 and 37			
degrees north (N) in Texas.			
Longitude (in degrees, minutes, and nearest			
second (DDD:MM:SS)) for the street address or the			
destination point of the driving directions. Longitude is the angular distance of a location west of the	95 3' 6" W		
prime meridian and will always be between 93 and			
107 degrees west (W) in Texas.			
Is this a project for a lead smelter, concrete crushing	r facility and/or a hazardous waste management		
facility?	No		
idomy.			
B. General Information			
Site Name:	Bayport Polymers Plant		
Area Name: Must indicate the general type of	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
operation, process, equipment or facility. Include			
numerical designations, if appropriate. Examples			
are Sulfuric Acid Plant and No. 5 Steam Boiler.	Bulk Plant Polypropylene Production Unit		
Vague names such as Chemical Plant are not			
acceptable.			
Are there any schools located within 3,000 feet of	No		
the site boundary?	INU		
C. Portable Facility			
Permanent or portable facility?	Permanent		
D. Industry Type	<u> </u>		
Principal Company Product/Business:	Plastic Materials		
A list of SIC codes can be found at:			
https://www.naics.com/sic-codes-industry-drilldown/			
Principal SIC code:	2821		
NAICS codes and conversions between NAICS and	SIC Codes are available at:		

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

https://www.census.gov/eos/www/r	naics/									
Principal NAICS code: 325211										
E. State Senator and Representa	tive for this site									
This information can be found at (n	ote, the website i	s not compatible to Internet Explorer):								
https://wrm.capitol.texas.gov/										
State Senator:		Senator Larry Taylor								
District:		11								
State Representative:		Representative Dennis Paul								
District:		129								
	V. P	roject Information								
A. Description	1									
Provide a brief description of the										
project that is requested. (Limited										
to 500 characters).	This project is a	renewal and amendment of the New Source Re	view Permit 9423.							
B. Project Timing										
	• • •	fore beginning construction. Construction is bro	•							
anything other than site clearance of	or site preparation	n. Enter the date as "Month Date, Year" (e.g. Jul	y 4, 1776).							
Due is a faul Obert of Constant of inc	INI/A									
	N/A N/A									
Projected Start of Operation:	IN/A									
C. Enforcement Projects	r rolated to an ac	gency investigation, notice of violation, or								
enforcement action?	i relateu to, air ag	gency investigation, notice of violation, of	No							
emorcement action:										
D. Operating Schedule										
Will sources in this project be author	orized to operate	8760 hours per year?	Yes							
viiii deareed iii and project be dain.	onzed to operate	or communication per year.	1 00							
	VI. A	oplication Materials								
All representations regarding const		operation procedures contained in the permit a	pplication shall be							
conditions upon which the permit is										
A. Confidential Application Mate	rials									
Is confidential information submitte	Is confidential information submitted with this application? Yes									
If yes, is each confidential page ma	arked "CONFIDEI	NTIAL" in large red letters?	Yes							

THSC §382.041 requires us not to disclose any information related to manufacturing processes that is marked Confidential. Mark any information related to secret or proprietary processes or methods of manufacture Confidential if you do not want this information in the public file. All confidential information should be separated from the application and submitted as a separate file. Additional information regarding confidential information can be found at: https://www.tceq.texas.gov/permitting/air/confidential.html

B. Is the Core Data Form (Form 10400) attached?

No

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

https://www.tceq.texas.gov/assets/public/permitting/centralregistry/10400.docx						
C. Is a current area map attached?	Yes					
Is the area map a current map with a true north arrow, an accurate scale, the entire plant property, the location of the property relative to prominent geographical features including, but not limited to, highways, roads, streams, and significant landmarks such as buildings, residences, schools, parks, hospitals, day care centers, and churches?						
Does the map show a 3,000-foot radius from the property boundary?	Yes					
D. Is a plot plan attached?	Yes					
Does your plot plan clearly show a north arrow, an accurate scale, all property lines, all emission points, buildings, tanks, process vessels, other process equipment, and two bench mark locations?	Yes					
Does your plot plan identify all emission points on the affected property, including all emission points authorized by other air authorizations, construction permits, PBRs, special permits, and standard permits?	Yes					
Did you include a table of emission points indicating the authorization type and authorization identifier, such as a permit number, registration number, or rule citation under which each emission point is currently authorized?	N/A					
E. Is a process flow diagram attached?	Yes					
Is the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw materials to be used in the process; all major processing steps and major equipment items; individual emission points associated with each process step; the location and identification of all emission abatement devices; and the location and identification of all waste streams (including wastewater streams that may have associated air emissions)?	Yes					
F. Is a process description attached?	Yes					
Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere?	Yes					
Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced?	Yes					
G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can be emailed with the submittal of this application workbook.	Yes					
Are emission rates and associated calculations for planned MSS facilities and related activities attached?	Yes					
H. Is a material balance (Table 2, Form 10155) attached?	Yes					
Table 2 (Form 10155), entitled Material Balance: A material balance representation may be required for all applications to confirm technical emissions information. Typically this is required for refining and chemical manufacturing processes involving reactions, separations, and blending. It may also be requested by the permit reviewer for other applications. Table 2 should represent the total material balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented aspreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether on they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions.						
I. Is a list of MSS activities attached?	Yes					

by Date: June 2, 2020
Permit #: 9423
Company Name: Equistar Chemicals, L.P.

Are the MSS activities listed and discussed separately, each complete with the authorization mechanism or emission rates, frequency, duration, and supporting information if authorized by this permit?	Yes
J. Is a discussion of state regulatory requirements attached, addressing 30 TAC Chapters 101, 111, 112, 113, 115, and 117?	Yes
For all applicable chapters, does the discussion include how the facility will comply with the requirements of the chapter?	Yes
For all not applicable chapters, does the discussion include why the chapter is not applicable?	Yes
K. Are all other required tables, calculations, and descriptions attached?	Yes

VII. Signature

The owner or operator of the facility must apply for authority to construct. The appropriate company official (owner, plant manager, president, vice president, or environmental director) must sign all copies of the application. The applicant's consultant cannot sign the application. **Important Note: Signatures must be original in ink, not reproduced by photocopy, fax, or other means, and must be received before any permit is issued.**

The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the project for which application is made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter 382; the Texas Clean Air Act (TCAA); the air quality rules of the Texas Commission on Environmental Quality; or any local governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I understand my signature indicates that this application meets all applicable nonattainment, prevention of significant deterioration, or major source of hazardous air pollutant permitting requirements. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.

Name:	Anthony Wood
Signature:	
	Original signature is required.
Date:	

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

l. "	Type of Permit Renewal and As	sociated Actions									
A. Current Operations											
Do all dockside vessel emissions a	ssociated with the facility comply	with all rules and regulations of	N/A								
the commission and with the intent of the TCAA, including protection of the health and property of the											
public and minimization of emissions to the extent possible, consistent with good air pollution											
practices? (30 TAC § 116.311(a)(1))											
Is the facility being operated in accordance with all requirements and conditions of the existing permit,											
including representations in the app	Yes										
any previously granted renewal, un	less otherwise authorized for a qι	ualified facility?	165								
Are there any permit actions pendir	ng before the TCEQ?		Yes								
If Yes, list actions and dates of sub											
Permit Action:		Date Submitted:									
A (D M 000407)			0/00/0040								
Amendment (Project No. 299187)			3/29/2019								
Have any qualified facility changes	under 30 TAC § 116 116(e) occu	rred since originally issued or last									
renewed?	ander 55 17 (5) 3 175.175(5) 5554	riod office originally leaded of last	No								
Have emission factors changed sin	ce the last permitting action?										
Thave chilecter induction changed chil	oo the last permitting action.		Yes								
B. Changes Made Since Last Am	andment or Panawal										
Have any of the following changes		a facilities covered by this permit s	ince it was last								
amended or renewed and are not c		,									
	unently authorized by a PBR, sta	nuaru permit, or other authorizatio	II! Select Tes								
or "No" to answer each question. Construction of a new emission sou	Irca?		No								
The emission of new chemical spec		missions?	No								
			INO								
An increase in emission rates on a pollutant as well as increases of a continuous continuous and a continuous		includes increases of a chieffa	Yes								
A change in the method of emission	n control if the emission control is	a source itself, such as a thermal	No								
oxidizer or flare?		1. () . ()									
Are new pollutants being added in t	·	·	No								
If "yes" to any question in Sectio	n B above is selected, a concu	rrent permit amendment is requ	ired before the								
permit can be renewed.											
	II. Federal Regulatory Qu										
Indicate if any of the following requi		icility. Note that some federal regu	lations apply to								
minor sources. Enter all applicable	Subparts.										
A. Title 40 CFR Part 60											
Do NSPS subpart(s) apply to a	Yes										
facility in this application?											

Version 4.0 Renewals

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Subpart DDD
·

Version 4.0 Renewals

Permit #: 9423

Date: June 2, 2020 Company Name: Equistar Chemicals, L.P. Technical IX. Emissions Review A. Impacts Analysis Any change that results in an increase in off-property concentrations of air contaminants requires an air quality impacts demonstration. Information regarding the air quality impacts demonstration must be provided with the application and show compliance with all state and federal requirements. Detailed requirements for the information necessary to make the demonstration are listed on the Impacts sheet of this workbook. Does this project require an impacts analysis? Yes B. Disaster Review If the proposed facility will handle sufficient quantities of certain chemicals which, if released accidentally, would cause off-property impacts that could be immediately dangerous to life and health, a disaster review analysis may be required as part of the application. Contact the appropriate NSR permitting section for assistance at (512) 239-1250. Additional Guidance can be found at: https://www.tceg.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/disrev-factsheet.pdf Does this application involve any air contaminants for which a disaster review is required? No C. Air Pollutant Watch List Certain areas of the state have concentrations of specific pollutants that are of concern. The TCEQ has designated these portions of the state as watch list areas. Location of a facility in a watch list area could result in additional restrictions on emissions of the affected air pollutant(s) or additional permit requirements. The location of the areas and pollutants of interest can be found at: https://www.tceq.texas.gov/toxicology/apwl/apwl.html Is the proposed facility located in a watch list area? No D. Mass Emissions Cap and Trade Is this facility located at a site within the Houston/Galveston nonattainment area (Brazoria, Yes Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller Counties)? Is Mass Emissions Cap and Trade applicable to the new or modified facilities? Yes If MECT is applicable, does the application contain documentation demonstrating that the proposed Yes facility, group of facilities, or account has obtained allowances to operate? X. Additional Requirements A. Bulk Fuel Terminals Is this project for a bulk fuel terminal? No

No

Version 4.0 Technical

B. Plant Fuel Gas Facilities

Does this site utilize plant fuel gas?

Texas Commission on Environmental Quality Form PI-1 General Application Unit Types - Emission Rates

Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

Click here to return to Cover Sheet.
Click here to see examples of how to complete this sheet.

Click here to see example Permit primary industr			to function)				Chemical / Ener	rav		1					
remit primary mouse	Include these	Lea for Workbook					One mean / Ener	97							
Action Requested (only	emissions in	Facility ID	Emission Point	Source Name	Pollutant	Current Short-	Current Long-	Consolidated Current Short-	Consolidated Current Long-	Proposed Short	Proposed Long-	Short-Term Difference	Long-Term	Unit Type (Used for reviewing BACT and	Unit Type Notes (only if "other" unit type in Column O)
1 action per FIN) Remove	summary?	Number (FIN)	Number (EPN) 30	LOG Flare	VOC CO	Term (lb/hr)	Term (tpy)	Term (lb/hr)	Term (tpy)	Term (lb/hr)	Term (tpy)	(lb/hr) 0 0	0	Monitoring Requirements) Control: Flare	Column O)
Renew only	Yes	FL-3706	FL-3706	Elevated Flare	NOx SO2 VOC	153.73	77.69			153.73	77.69	0 0	0 0	Control: Flare	
					NOx SO2	200.8 24.84 0.79	160.74 19.89 2.46			127.74 24.8 0.78	102.48 19.89 2	-73.06 -0.0399 -0.01	-58.26 0 -0.46		
Renew only New/Modified	Yes Yes	D-885 PP-ANALYZER	D-885 PP-ANALYZER	Waste Oil Loading Analyzer Vents	voc voc	0.06	0.01			0.06	0.0007	-0.044	-0.0093 -0.19	Loading: Truck Other	Analyzer sample system
					CO NOx	0.01	0.01 0.01			0.01 0.002	0.05 0.009	0 -0.008	0.04 -0.001		purges
New/Modified	Yes	CT-895	CT-895	West Marley Cooling Tower	VOC PM	1.89 0.59	6.2 1.94			1.89 0.59	6.19 1.95	0	-0.0099 0.01	Cooling Tower	
				Fast Madeu Caslina	PM10 PM2.5	0.33 0.01	1.09 0.01			0.33 0.001	1.09 0.004	-0.009	-0.006		
New/Modified	Yes	CT-6901	CT-6901	East Marley Cooling Tower	VOC PM	0.57	2.49 0.77			0.84	2.44 0.77	0.27	-0.05 0	Cooling Tower	
				Xcel Marley 3 Cooling	PM10 PM2.5	0.18	0.77			0.15 0.0005	0.43	-0.03 -0.1795	-0.34 -0.768		
Renew only	Yes	CT-891	CT-891	Tower	VOC PM PM10	1.28 0.4 0.22	5.58 1.75 0.98			1.02 0.32 0.18	2.97 0.93 0.52	-0.26 -0.08 -0.04	-2.61 -0.82 -0.46	Cooling Tower	
Renew only	Yes	CT-4861	CT-4861	DLX Cooling Tower	PM2.5 PM	0.01	0.01 0.15			0.0007 0.041	0.002	-0.0093 -0.099	-0.008 -0.1	Cooling Tower	
				Catalyst Dispersion	PM10 PM2.5 VOC	0.02	0.07			0.001	0.02	-0.019 -0.0099 0.22	-0.05 -0.0099 0.01		
New/Modified New/Modified	Yes	D-3106 D-3106B	D-3106 D-3106B	Drum Catalyst Dispersion Drum	voc	0.01	0.01			0.23	0.02	1.15	0.16	Process Vent Process Vent	
New/Modified	Yes	D-3504	D-3504	Stabilizer Additive Drum	voc	0.01	0.01			0.15	0.02	0.14	0.01	Process Vent	
					PM PM10 PM2.5	0.01 0.01 0.01	0.01 0.01 0.01			0.03 0.02 0.003	0.003 0.001 0.0002	0.02 0.01 -0.007	-0.007 -0.009 -0.0098		
Renew only Renew only	Yes Yes	D-3103 D-3105	D-3103 D-3105	TEAL Seal Pot Drum Oil/Grease Blending	VOC VOC	0.01	0.01			0.0005 0.001	0.0002 0.00005 0.00003	-0.009 -0.009	-0.0098 -0.0099 -0.0099	Process Vent Process Vent	
Renew only Renew only	Yes Yes	D-3107 D-3110A	D-3107 D-3110A	Drum Hydraulic Oil Drum Donor Metering Drum	VOC	0.01	0.01 0.01			0.0001 0.0002	0.0000009 0.000004	-0.0099 -0.0098	-0.0099 -0.0099	Process Vent Process Vent	
New/Modified Renew only	Yes Yes	D-3113 T-3111	D-3113 T-3111	Additive Drum Seal Po Bulk Donor Tank	voc	0.01	0.01			0.02	0.0008	0.01	-0.0092 -0.0099	Process Vent Process Vent	
Renew only New/Modified	Yes Yes	C-FUG TK-2527A	C-FUG TK-2527A	Fugitives CLX Mineral Oil Tank	VOC	5.17	22.65			2.23	9.78	-2.94 0.17	-12.87 -0.006	Fugitives: Piping and Equipment Leak Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
New/Modified	Yes	TK-2527B	TK-2527B	CLX Mineral Oil Tank	voc	0.05	0.01			0.22	0.004	0.17	-0.006	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
New/Modified	Yes	TK-880	TK-880	Mineral Oil Tank Catalyst Dispersion	voc	0.01	0.01			0.09	0.002	0.08	-0.008	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
New/Modified New/Modified	Yes Yes	D-4106 D-4504	D-4106 D-4504	Drum Stabilizer Additive Drum	voc	0.01	0.01			3.14 0.11	0.26	3.13 0.1	-0.009	Process Vent Process Vent	
				Drum	PM PM10	0.01	0.01 0.01			0.03 0.02	0.0004 0.0002	0.02 0.01	-0.0096 -0.0098		
Renew only Renew only	Yes Yes	D-FUG D-4105	D-FUG D-4105	Fugitives Oil Blending Drum	PM2.5 VOC VOC	0.01 3.67 0.01	0.01 16.07 0.01			0.003 2.36 0.001	0.00003 10.33 0.00001	-0.007 -1.31 -0.009	-0.0099 -5.74 -0.0099	Fugitives: Piping and Equipment Leak Process Vent	
Renew only Renew only	Yes Yes	D-4107 D-4110A	D-4107 D-4110A	Hydraulic Oil Drum Donor Metering Drum	VOC	0.01	0.01 0.01			0.005 0.0002	0.00005 0.000007	-0.005 -0.0098	-0.0099 -0.0099	Process Vent Process Vent	
Renew only Renew only Renew only	Yes Yes Yes	D-4110B T-4111 D-4103	D-4110B T-4111 D-4103	TEAL Seal Pot Drum	VOC VOC	0.01 0.01 0.01	0.01 0.01 0.01			0.0002 0.002 0.0005	0.000007 0.00006 0.00005	-0.0098 -0.008 -0.0095	-0.0099 -0.0099 -0.0099	Process Vent Process Vent Process Vent	
New/Modified	Yes	D-6106A	D-6106A	Catalyst Dispersion Drum Catalyst Dispersion	voc	0.42	0.03			2.64	0.2	2.22	0.17	Process Vent	
New/Modified New/Modified	Yes Yes	D-6106B D-6504	D-6106B D-6504	Drum Stabilizer Additive	voc	0.42	0.04			2.64 0.11	0.2	2.22 0.1	-0.009	Process Vent Process Vent	
				Drum	PM PM10	0	0			0.027 0.01	0.0003 0.0002	0.027 0.01	0.0003 0.0002		
Renew only	Yes	D-6103	D-6103	TEAL Seal Pot Drum	PM2.5 VOC	0.01	0 0.01			0.003 0.0005	0.00003 0.00005	0.003 -0.0095	0.0001 -0.0099	Process Vent	
Renew only Renew only	Yes Yes	D-6105 D-6105B	D-6105 D-6105B	Grease Blending Drum Oil Blending Drum	VOC	0.01	0.01			0.0003 0.0004	0.000006 0.000009	-0.0097 -0.0096	-0.0099 -0.0099	Process Vent Process Vent	
Renew only Renew only Renew only	Yes Yes Yes	D-6107 D-6110A D-6110B	D-6107 D-6110A D-6110B	Hydraulic Oil Drum Donor Metering Drum Donor Metering Drum	VOC VOC	0.01 0.02 0.02	0.01 0.01 0.01			0.0001 0.0002 0.0002	0.0000008 0.000001 0.000007	-0.0099 -0.0198 -0.0198	-0.0099 -0.0099 -0.0099	Process Vent Process Vent Process Vent	
Renew only New/Modified	Yes Yes	T-6111 D-6113	T-6111 D-6113	Bulk Donor Tank Additive Drum Seal Po	VOC	0.02	0.01			0.001	0.00005	-0.019 0.11	-0.0099 0.05	Process Vent Process Vent	
Remove	Yes	D-6115	D-6115	Additive Metering	voc	0.02	0.01			0	0	-0.02	-0.01	Other	Drum vessel routed to D- 6112 (EPN D-6113) and
New/Modified	Yes	E-FUG	E-FUG	Drum Fugitives	VOC	7.73	33.78			7.95	34.83	0.22	1.05	Fugitives: Piping and Equipment Leak	does not emit as originally represented.
New/Modified	Yes	M-2573	M-2573	Railcar Unloading (Flake)	VOC	0.21	0.9			0.29	1 25	0 08	0 0 35	Control: Bag Filter/Baghouse	
					PM10 PM2.5	0.21	0.9 0.9			0.03 0.01	0.13 0.06	-0.18 -0.2	-0.77 -0.84		
Renew only	Yes	M-2574	M-2574	Railcar Unloading (Flake)	VOC PM	0.21	0.9			0.08	0.36	0 -0.13	0 -0.54	Control: Bag Filter/Baghouse	
				C-Line Railcar Loading	PM10 PM2.5	0.21 0.21	0.9			0.008 0.004	0.04 0.02	-0.202 -0.206	-0.86 -0.88		
New/Modified	Yes	M-42591	M-42591	(Flake)	PM PM10	0	0			0.13	0.56	0.13	0.56	Control: Bag Filter/Baghouse	
New/Modified	Yes	F-583	F-583	D-Line Railcar Loading	PM10 PM2.5 VOC	0	0			0.01 0.006	0.06	0.01 0.006	0.06 0.03	Control: Bag Filter/Baghouse	
	700			(Flake)	PM PM10	0	0			0.13 0.01	0.56 0.06	0.13 0.01	0.56 0.06		
New/Modified	Yes	S-2580	S-2580	DLX Centralized Vent	PM2.5 VOC	0	0			0.006	0.03	0.006	0.03	Control: Bag Filter/Baghouse	
				System	PM PM10	0.13 0.13	0.56 0.56			0.14 0.01	0.6 0.06	0.01 -0.12	0.04	, , , , , , , , , , , , , , , , , , ,	
Renew only	Yes	D-4801-03	D-4801-03	DLX Pellet Silos DLX Railcar Loading	PM2.5 VOC	0.13	0.56			0.007	0.03	-0.123 0	-0.53 0	Process Vent	
New/Modified	Yes	F-4842	F-4842	(Pellets)	VOC PM	0.2	0.88			0.27	1.2	0.07	0.32	Control: Bag Filter/Baghouse	
Name Market	V	55404	F 5404	CLX Centralized Vent	PM10 PM2.5	0.2	0.88			0.03 0.01	0.12 0.06	-0.17 -0.19	-0.76 -0.82	Control Des Filtrel Desky	
New/Modified	Yes	F-5101	F-5101	System	PM PM10	0.06	0.26 0.26			0.1 0.01	0.45 0.05	0 0.04 -0.05	0.19 -0.21	Control: Bag Filter/Baghouse	
New/Modified	Yes	F-6802	F-6802	ELX Centralized Vent	PM2.5 VOC	0.06 0.06	0.26			0.005	0.05	-0.05 -0.055	-0.21 -0.24	Control: Bag Filter/Baghouse	
				System	PM PM10	0.1 0.1	0.43 0.43			0.21 0.02	0.94 0.09	0.11 -0.08	0.51		
New/Modified	Yes	F-5303	F-5303	CLX Railcar Loading (Pellets)	PM2.5 VOC	0.1	0.43			0.01	0.05	-0.09 0	-0.38 0	Control: Bag Filter/Baghouse	
				(*. anaro)	PM PM10	0.05	0.2			0.51 0.05	2.25 0.23	0.46 0	2.05 0.03		
New/Modified	Yes	F-6841-42	F-6841-42	ELX Railcar Loading (Pellets)	PM2.5 VOC	0.05	0.2			0.03	0.11	-0.02 0	-0.09 0	Control: Bag Filter/Baghouse	
					PM PM10	0.69 0.69 0.69	2.25 2.25			1.03 0.1	4.51 0.45	0.34 -0.59 -0.64	2.26 -1.8		
Renew only	Yes	E-CAP	E-CAP	VOC Emission Cap for Various EPNs	VOC	0.69 9.75	2.25 19.4			0.05 9.75	0.23 19.4	-0.64 0	-2.02 0	Other	Cap on VOC emissions
Renew only	Yes	PP-WWTR	PP-WWTR	Polypropylene Waste Water	voc	1.95	0.87			1.95	0.87	0	0	Wastewater Facilities MSS Activities	
Renew only	Yes	FL-3706	FL-3706	Elevated Flare (MSS)	VUU	540	0		1	540	0	0	0	moo Acivilles	

Texas Commission on Environmental Quality Form PI-1 General Application Unit Types - Emission Rates

Date: June 2, 2020 Permit #: 9423

	Include these														
	emissions in							Consolidated	Consolidated			Short-Term			Unit Type Notes (only if
Action Requested (only 1 action per FIN)	y annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)	Current Short- Term (lb/hr)	Current Long- Term (tpy)	Proposed Short Term (lb/hr)	Proposed Long- Term (tpy)	Difference (lb/hr)	Long-Term Difference (tpy)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	"other" unit type in Column O)
					CO NOx	602.14 74.5	0			383.79 74.5	0	-218.35	0		
New/Modified	Yes	MSS41	MSS41	C-Line Maintenance	voc	15.48	0.06			15.48	0.15	0	0.09	MSS Activities	
New/Modified	Yes	MSS42	MSS42	Shutdown D-Line Maintenance	voc	15.48	0.06			15.48	0.15	0	0.09	MSS Activities	
	-			Shutdown E-Line Maintenance											
New/Modified	Yes	MSS43	MSS43	Shutdown Bullets Area	voc	26.22	0.1			26.22	0.26	0	0.16	MSS Activities	
Renew only	Yes	MSS44	MSS44	Maintenance	voc	26.22	0.01			26.22	0.01	0	0	MSS Activities	
Remove	Yes	MSS45	MSS45	Shutdown Monomer Supplier	voc	0.01	0.01			0	0	-0.01	-0.01	Other	Removing this source. Does
				Proving C-Line Compressor											not vent to atmosphere.
Renew only	Yes	MSS46	MSS46	Maintenance	voc	0.01	0.01			0.01	0.00005	0	-0.0099	MSS Activities	
Renew only	Yes	MSS47	MSS47	D-Line Compressor Maintenance	voc	0.01	0.01			0.01	0.00005	0	-0.0099	MSS Activities	
Renew only	Yes	MSS48	MSS48	E-Line Compressor Maintenance	voc	0.01	0.01			0.01	0.00005	0	-0.0099	MSS Activities	
Renew only	Yes	MSS49	MSS49	C-Line Pump Maintenance	voc	0.06	0.01			0.06	0.0003	0	-0.0097	MSS Activities	
Renew only	Yes	MSS50	MSS50	D-Line Pump	voc	0.06	0.01			0.06	0.0003	0	-0.0097	MSS Activities	
, D	Yes	MSS51	MSS51	Maintenance E-Line Pump	voc	0.06	0.01			0.06	0.0003	0	-0.0097	MSS Activities	
Renew only	-			Maintenance Bullet Pump											
Renew only	Yes	MSS52	MSS52	Maintenance C-Line Commercial	voc	0.06	0.01			0.06	0.0003	0	-0.0097	MSS Activities	
Renew only	Yes	MSS53	MSS53	Shutdown	voc	15.48	0.06			15.48	0.06	0	0	MSS Activities	
Renew only	Yes	MSS54	MSS54	D-Line Commercial Shutdown	voc	15.48	0.06			15.48	0.06	0	0	MSS Activities	
Renew only	Yes	MSS55	MSS55	E-Line Commercial Shutdown	voc	26.22	0.1			26.22	0.1	0	0	MSS Activities	
Renew only	Yes	MSS56	MSS56	E-Line Gas Phase	voc	11.04	0.14			11.04	0.14	0	0	MSS Activities	
Renew only	Yes	MSS57	MSS57	Reactor Cleaning C-Line Filter Changes	VOC	0.03	0.01			0.03	0.0002	0	-0.0098	MSS Activities	
Renew only Renew only	Yes Yes	MSS58 MSS59	MSS58 MSS50	D-Line Filter Changes E-Line Filter Changes	VOC	0.03 0.03	0.01 0.01			0.03	0.0002 0.0002	0	-0.0098 -0.0098	MSS Activities MSS Activities	
,		MSS60	MOODS	C/D/E Instrument											
Renew only	Yes		MSS60	Maintenance (repair/replace)	voc	0.01	0.01			0.00000004	0.00000001	-0.0099	-0.0099	MSS Activities	
New/Modified	Yes	F-5102	F-5102	CLX Additive System	PM PM10	0	0			0.1 0.01	0.45	0.1 0.01	0.45 0.05	Control: Bag Filter/Baghouse	
					PM2.5	0	0			0.005	0.02	0.005	0.02		
New/Modified	Yes	S-5203D	S-5203D	CLX Pellet Silos (M- 52032/33/34)	PM	0	0			0.8	3.51	0.8	3.51	Control: Bag Filter/Baghouse	
					PM10 PM2.5	0	0			0.08 0.04	0.35 0.18	0.08 0.04	0.35 0.18		
New/Modified	Yes	F-6801	F-6801	ELX Central Vacuum	PM PM	0	0			0.02	0.11	0.02	0.11	Control: Bag Filter/Baghouse	
	1			Cleaning System	PM10	0	0			0.002	0.01	0.002	0.01		
				DLX Central Vacuum	PM2.5	0	0			0.001	0.005	0.001	0.005		
New/Modified	Yes	F-4801	F-4801	Cleaning System	PM	0	0			0.03	0.12	0.03	0.12	Control: Bag Filter/Baghouse	
					PM10 PM2.5	0	0			0.003	0.01	0.003 0.001	0.01 0.006		
New/Modified	Yes	D-4105A	D-4105A	Grease Blending Drum	voc	0	0			0.0001	0.000001	0.0001	0.0001	Process Vent	
New/Modified	Yes	D-4706	D-4706	DLN Additive Drum	VOC	0	0			0.07	0.002	0.07	0.002	Process Vent	
New/Modified New/Modified	Yes Yes	PP-SAMPL	PP-SAMPL	Sampling Vents	VOC	0	0			0.001 4.59	0.0004	0.001 4.59	0.0004 0.08	Other	Vent from field samplers
					PM10	0	0			0.46	0.008	0.46 0.23	0.008		
Consolidate	Yes	TK-884	TK-884	West/East Marley CT -	PM2.5 H2SO4	0	0	0.0005	0.000004	0.23	0.004	0.23	0.004	Storage Tank (1): Fixed roof with capacity <	
	-			Sulfuric Acid Tank Xcel CT - Sulfuric Acid										25,000 gal or TVP < 0.50 psia Storage Tank (1): Fixed roof with capacity <	
Consolidate	Yes	TK-895	TK-895	Tank	H2SO4	0	0	0.0005	0.000004	0.0005	0.000004	0	0	25,000 gal or TVP < 0.50 psia	
Renew only	Yes	TK-5104C	TK-5104C	CLX Peroxide Tank	VOC	0.01	0.01			0.038	0.007	0.028	-0.003	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
Renew only	Yes	D-6850	D-6850	DLX / ELX Peroxide Tank	voc	0.01	0.01			0.038	0.01	0.028	0	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
Renew only	Yes	E-CAP	E-CAP	VOC Emission Cap for various EPNs	Exempt Solvents	7.36	26.19			7.36	26.19	0	0	Other	VOC Emission Cap for EPNs 120, 122, 102, 116, 152, 153, 154, 14C, 131, 132,
New/Modified		MSS61	MSS61	C-Line Loop Reactors (R-3201 & R-3202)	PM	0	0			0.01	0.0002	0.01	0.0002	MSS Activities	133
				Emptying	PM10	0	0			0.005	0.00008	0.005	0.0001		
					PM2.5	0	0			0.0008	0.00001	0.0008	0.0001		
New/Modified	Yes	MSS62	MSS62	D-Line Loop Reactors (R-4201 & R-4202) Emptying	PM	0	0			0.01	0.0002	0.01	0.0002	MSS Activities	
					PM10 PM2.5	0	0			0.005	0.00008	0.005	0.0001		
				E-Line Loop Reactors		0	ŭ			0.0008	0.00001	0.0008			
New/Modified		MSS63	MSS63	(R-6201 & R-6202) Emptying	PM	0	0			0.01	0.0002	0.01	0.0002	MSS Activities	
					PM10	0	0			0.005 0.0008	0.00008	0.005	0.0001		
				E-Line Gas Phase	PM2.5	0	0				0.00001	0.0008	0.0001		
New/Modified		MSS64	MSS64	Reactors (R-6401 & R- 6402) Emptying	PM	0	0			0.02	0.0002	0.02	0.0002	MSS Activities	
				posse) Emptyrig	PM10	0	0			0.009	0.00008	0.009	0.0001		
New/Modified		U-FUG	U-FUG	Utilities Fugitives	PM2.5 VOC	0	0			0.001 1.99	0.0001 8.73	0.001 1.99	0.0001 8.73	Fugitives: Piping and Equipment Leak	
												0	0		
												0	0		
												0	0		
			1	1							t	Ö	i n		

Texas Commission on Environmental Quality Form PI-1 General Application Stack Parameters C

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Stack Parameters

This sheet documents the stack parameters for each EPN. You do not need to complete this sheet for sources included in an EMEW for this project.

Instructions:

1. The EPN list is automatically populated from the "Unit Types - Emission Rates" sheet.

2. Indicate if the source is included in an EMEW. If it is, you do not need to complete the additional information.

3. Enter the stack parameters that apply for each EPN.

4. Cap EPNs do not need stack parameters (leave those rows blank).

EPN 30 FL-3706 D-885 D-885 CT-6995 CT-6995 CT-891 CT-4861 D-3106 D-3106B D-3504 D-3106B D-3107 D-31107	Included in EMEW? No Yes No No No No Yes No No Yes Ves No No No Yes No No No Yes Yes Yes	UTM Coordinates Zone 15 15 15 15 15	East (Meters) 301711 301505 301726	North (Meters) 3280050	Point Dischar Building Height (ft)	rge Paramete Height Above Ground (ft)	Stack Exit Diameter (ft)	Velocity (FPS)	Temperature (°F)		Fugitives - Width (ft)	Fugitives - Axis Degrees
90 FL-3706 FL-3706 FL-3706 FL-3706 FL-3706 FL-3706 FL-3905 CT-6901 CT-891 CT-4861 D-3106 D-3106 D-3106 D-3106 D-3103 D-3107 D-3110A D-3111 T-3111 C-F-IGG IK-2527A	EMEW? No Yes No No No No No Yes No No Yes Yes Yes Yes	20ne 15 15 15 15 15 15	301711 301505 301726	(Meters) 3280050		Above Ground (ft)	Diameter (ft)	(FPS)	(°F)			Axis
FL-3706 D-885 PP-ANALYZER CT-895 CT-8991 CT-4861 D-3106 D-3106 D-3106 D-3107 D	Yes No No No Yes No No Yes Yes Yes Yes	15 15 15 15	301505 301726			300	12					
D-885 PP-ANALYZER CT-895 CT-6901 CT-891 CT-898 CT-4861 D-3106 D-3106 D-3108 D-3504 D-3504 D-3103 D-3105 D-3107 D-31101 D-31101 D-31111 C-FUG TK-2527A	No No No Yes No No Yes Yes Yes Yes	15 15 15	301726	2270000			,,_	65.616	1831.73			
CT-895 CT-896 CT-887 CT-8881 D-3106 D-3106 D-3108 D-3103 D-3105 D-3107 D-31101 D-31101 D-3111 C-FUG K-2527A	No Yes No No Yes Yes Yes	15 15		3279896		15	0.1	1	80			
CT-6901 CT-891 CT-4861 D-3106 D-3106B D-3504 D-3103 D-3107 D-31107 D-3110A D-3113 T-3111 C-FUG TK-2527A	Yes No No Yes Yes Yes	15		3279930		15	0.16	0.01	250			
CT-891 CT-4861 D-3106 D-3106B D-3106B D-3103 D-3103 D-3107 D-3107 D-3110A D-31113 T-3111 C-F-UG TK-2527A	No No Yes Yes Yes		301449	3279932		35	12	15	80			
D-3106 D-3106B D-3504 D-3105 D-3107 D-3107 D-3107 D-3110A D-3113 T-3111 C-FUG TK-2527A	No Yes Yes Yes		301292	3279927		35	14	15	88			
D-3108B D-3504 D-3504 D-3103 D-3105 D-3107 D-3110A D-3113 T-3111 C-FUG	Yes Yes	15	301549	3279922		11.3	5	15	135			
D-3504 D-3103 D-3105 D-3107 D-31107 D-3110A D-3113 T-3111 C-FUG TK-2527A	Yes											
D-3105 D-3107 D-3110A D-3113 T-3111 C-FUG TK-2527A	Nο											
D-3107 D-3110A D-3113 T-33111 C-FUG TK-2527A		15	301452	3279814		3	0.1	1	80			
D-3110A D-3113 T-3111 C-FUG TK-2527A	No	15	301422	3279867		15	0.1	1	80			
D-3113 T-3111 C-FUG TK-2527A	No No	15 15	301417 301431	3279866 3279853		15 2	0.1	1	80 80			
C-FUG TK-2527A	Yes											
TK-2527A	No	15	301403	3279844		12	0.1	1	80			
	No Yes	15	301417	3279820		25				120	250	0
	Yes											
TK-880	Yes											
D-4106 D-4504	Yes Yes											
D-FUG	Yes											
D-4105	No	15	301523	3279867		20	3	0.01	78			
D-4107 D-4110A	No	15	301541	3279666		5	3	0.01	80 78			
D-4110A D-4110B	No No	15 15	301531 301515	3279853 3279852		20 20	3	0.01	78 78			
T-4111	No	15	301503	3279844		20	3	0.01	78			
D-4103	No	15	301552	3279814		20	3	0.01	78			
D-6106A D-6106B	Yes Yes											
D-6504	Yes											
D-6103	No	15	301652	3279814		1	1	0.01	80			
D-6105 D-6105B	No No	15 15	301622 301602	3279867 3279866		1 15	3	0.01	80 80			
D-6107	No	15	301602	3279866		15	1	0.01	80			
D-6110A	No	15	301631	3279853		1	0.5	0.01	68			
D-6110B	No	15	301615	3279852		10	3	0.01	80			
T-6111 D-6113	No No	15 15	301603 301631	3279844 3279857		12 8	3	0.01	80 167			
D-6115	No	15	301631	3279859		8	1.3	0.01	167			
E-FUG	Yes	45	004000	0070044			0.5	70	0.0			
M-2573 M-2574	No No	15 15	301288 301332	3279811 3279816		4	0.5 0.75	73 91	80 80			
M-42591	Yes	15	00100E	32/30/10		7	0.70	31	00			
F-583	Yes											
S-2580 D-4801-03	No No	15 15	301549 301543	3279926 3279926		15 110	0.67 1.67	21 25	75 125			
F-4842	No	15	301549	3280006		7	0.67	60	75			
F-5101	No	15	301182	3279616		10	0.5	0.01	80			
F-6802 F-5303	No No	15 15	301182 301072	3279616 3279676		10 16	0.5	0.01	80 80			
F-6841-42	No	15	301072	3279676		16	1	0.01	80			
E-CAP	No	15	301288	3279811		4	0.5	73	80			
PP-WWTR	No	15	301516	3279940		5	0.000	0.000	450.07	800	400	0
MSS41 MSS42	No No	15 15	301407 301510	3279826 3279826		5	0.003	0.003	-459.67 -459.67			
MSS43	Yes	15	301310	3213020			0.000	0.000	-400.01			
MSS44	No	15	301407	3279826		5	0.003	0.003	-459.67			
MSS45 MSS46	No No	15 15	301407 301407	3279826 3279826		5 5	0.003	0.003	-459.67 -459.67			
WSS47	No	15	301510	3279826		5	0.003	0.003	-459.67			
MSS48	No	15	301630	3279826		5	0.003	0.003	-459.67			
MSS49 MSS50	No No	15 15	301407 301510	3279826 3279826		5 5	0.003	0.003	-459.67 -459.67			
MSS51	No No	15	301510	3279826		5	0.003	0.003	-459.67 -459.67			
MSS52	No	15	301407	3279826		5	0.003	0.003	-459.67			
MSS53	No	15	301407	3279826		5	0.003	0.003	-459.67			
MSS54 MSS55	No No	15 15	301510 301630	3279826 3279826		5 5	0.003	0.003	-459.67 -459.67			
MSS56	No	15	301630	3279826		5	0.003	0.003	-459.67			
MSS57	No	15	301407	3279826		5	0.003	0.003	-459.67			
MSS58 MSS59	No No	15 15	301510 301630	3279826 3279826		5 5	0.003	0.003	-459.67 -459.67			
MSS60	No	15	301407	3279826		5	0.003	0.003	-459.67 -459.67			
F-5102	No	15	301184	3279653		2	0.5	23.77	-459.67			
S-5203D F-6801	Yes											
F-4801	Yes Yes											
D-4105A	No	15	301523	3279871		6.5625				1.64	1.64	0
D-4706	Yes											
PP-SAMPL TK-884	Yes Yes											
TK-895	Yes											
TK-5104C	Yes											
D-6850 MSS61	Yes Yes											
MSS62	Yes											
	Yes											
MSS63	Yes											
MSS64												
	Yes											

Texas Commission on Environmental Quality Form PI-1 General Application **Public Notice**

Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

No

Click here to return to Cover Sheet.

vegetable fibers (agricultural facilities)?

	I. Public Notice Applicability						
A. Application Type	i. I dolle Notice Applicability						
A. Application Type							
Is this an application for a renewal?		Yes					
·							
le this are amplication for a universe request one	andre ant O	Vee					
Is this an application for a minor permit ame		Yes					
Is there any change in character of emissions in this application (a new criteria pollutant or a new VOC or PM species)?							
Is there a new air contaminant in this applic	ation?	No					
	Thresholds (for Initial and Amendment Projects)	110					
	loes not include consolidation or incorporation of any previously authoriz	zed facility or					
	ges to permitted allowable emission rates when exclusively due to chan						
	is in emissions which are not enforceable through the amended permit.						
	nissions increases under the amended permit and the emissions decrea						
amended permit for each air contaminant.	missions indicases under the amended permit and the emissions decrea	isos under the					
amended permit for each air contaminant.							
The table below will generate emission incr	reases based on the values represented on the "Unit Types - Emission F	Rates" sheet.					
	of the "Unit Types - Emission Rates" worksheet to indicate if a unit's pro-						
of emissions should be included in these to		opocou change					
Notes:							
1. Emissions of PM, PM10, and/or PM2.5 r	nay have been previously quantified and authorized as PM, PM10,and/o	or PM2.5. These					
	nt guidance and policy to demonstrate compliance with current standard						
notice requirements may change during the	· · ·	'					
, , , ,							
2. All renewals require public notice.							
This row is optional. If you do not think							
the table below accurately represents							
public notice applicability increases for							
your project, provide discussion here							
(1000 characters).							
Do the facilities handle, load, unload, dry, r	nanufacture, or process grain, seed, legumes, or						

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice C

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Pollutant	Current Long- Term (tpy)	Consolidated Emissions (tpy)	Proposed Long- Term (tpy)	Project Change in Allowable (tpy)	PN Threshold	Notice required?	
VOC	186.06	0.00	175.16	-10.90	5	No	
PM	11.01	0.00	20.65	9.64	5	Yes*	
PM ₁₀	9.31	0.00	3.78	-5.53	5	Yes*	
PM _{2.5}	7.20	0.00	0.86	-6.34	5	Yes*	
NO _x	19.90	0.00	19.90	0.00	5	No	
CO	160.75	0.00	102.53	-58.22	50	No	
SO ₂	2.46	0.00	2.00	-0.46	10	No	
Pb	0.00	0.00	0.00	0.00	0.6	No	
H2SO4	0	0.000008	0.000008	0	5	No	
Exempt Solvents	26.19	0	26.19	0	5	No	
* Notice is required for	or PM_PM10_and P	M2.5 if one of these	nollutants is above	the threshold			

^{**} Notice of a GHG action is determined by action type. Initial and major modification always require notice. Voluntary updates require a consolidated notice if there is a change to BACT. Project emission increases of CO2e (CO2 equivalent) are not relevant

require a consolidated notice if there is a change to BACT. Project emission increases of CO2e (CO2 equivalent) are not relevant for determining public notice of GHG permit actions.

C. Is public notice required for this project as represented in this workbook?	Yes
If no, proceed to Section III Small Business Classification.	
Note: public notice applicability for this project may change throughout the technical review.	
D. Are any HAPs to be authorized/re-authorized with this project? The category "HAPs" must	No
be specifically listed in the public notice if the project authorizes (reauthorizes for renewals) any	
HAP pollutants.	

II. Public Notice Information

Complete this section if public notice is required (determined in the above section) or if you are not sure if public notice is required.

A. Contact Information

Enter the contact information for the **person responsible for publishing.** This is a designated representative who is responsible for ensuring public notice is properly published in the appropriate newspaper and signs are posted at the facility site. This person will be contacted directly when the TCEQ is ready to authorize public notice for the application.

Prefix (Mr., Ms., Dr., etc.):	Mrs.
First Name:	Raven
Last Name:	Elliott
Title:	Senior Air Quality Project Manager
Company Name:	BGE, Inc.
Mailing Address:	10777 Westheimer Road

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice C

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Address Line 2:	Suite 400
City:	Houston
State:	Texas
ZIP Code:	77042
Telephone Number:	713-488-8145
Fax Number:	
Email Address:	Relliott@BGEInc.com
Enter the contact information for the Tech	nical Contact. This is the designated representative who will be listed in the public notice
as a contact for additional information.	
Prefix (Mr., Ms., Dr., etc.):	Ms.
First Name:	Carlisa
Last Name:	Navy
Title:	Sr. Environmental Engineer
Company Name:	LyondellBasell Industries N.V.
Mailing Address:	10801 Choate Roade
Address Line 2:	
City:	Pasadena
State:	TX
ZIP Code:	77507
Telephone Number:	281-474-0727
Fax Number:	
Email Address:	Carlisa.Navy@lyondellbasell.com
B. Public place	

Place a copy of the full application (including all of this workbook and all attachments) at a public place in the county where the facilities are or will be located. You must state where in the county the application will be available for public review and comment. The location must be a public place and described in the notice. A public place is a location which is owned and operated by public funds (such as libraries, county courthouses, city halls) and cannot be a commercial enterprise. You are required to pre-arrange this availability with the public place indicated below. The application must remain available from the first day of publication through the designated comment period.

If this is an application for a PSD, nonattainment, or FCAA §112(g) permit, the public place must have internet access available for the public as required in 30 TAC § 39.411(f)(3).

If the application is submitted to the agency with information marked as Confidential, you are required to indicate which specific portions of the application are not being made available to the public. These portions of the application must be accompanied with the following statement: Any request for portions of this application that are marked as confidential must be submitted in writing, pursuant to the Public Information Act, to the TCEQ Public Information Coordinator, MC 197, P.O. Box 13087,

Austin. Texas 78711-3087.		
Name of Public Place:	La Porte Public Library	
Physical Address:	600 S. Broadway St.	
Address Line 2:		
City:	La Porte	
ZIP Code:	77521	
County:	Harris	
Has the public place granted authorization viewing and copying?	to place the application for public	Yes
viewing and copying.		

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice C

Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

C. Alternate Language Publication In some cases, public notice in an alternate language is required. If an elementary or middle school nearest to the facility is in a school district required by the Texas Education Code to have a bilingual program, a bilingual notice will be required. If there is no bilingual program required in the school nearest the facility, but children who would normally attend those schools are eligible to attend bilingual programs elsewhere in the school district, the bilingual notice will also be required. If it is determined that alternate language notice is required, you are responsible for ensuring that the publication in the alternate language is complete and accurate in that language. Is a bilingual program required by the Texas Education Code in the School Yes District? Are the children who attend either the elementary school or the middle school closest to your facility eligible to be enrolled in a bilingual program provided by Yes the district? If yes to either question above, list which language(s) are required by the Spanish bilingual program?

Texas Commission on Environmental Quality Form PI-1 General Application Public Notice

Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

III. Small Business Classification	
Complete this section to determine small business classification. If a small business requests a permit, agency rules (30 TAC § 39.603(f)(1)(A)) allow for alternative public notification requirements if all of the following criteria are met. If these requirements are met, public notice does not have to include publication of the prominent (12 square inch) newspaper notice.	
Does the company (including parent companies and subsidiary companies) have fewer than 100 employees or less than \$6 million in annual gross receipts?	No
Small business classification:	No

Texas Commission on Environmental Quality Form PI-1 General Application Federal Applicability

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Federal Applicability Determination Summary

This sheet provides a summary of nonattainment, PSD and GHG PSD permitting applicability. If nonattainment is required, offset information is included. A full analysis for nonattainment, PSD, and PSD GHG permitting applicability must be included in the permit application. If you can see the page header, there are questions applicable to your project on this sheet.

Instructions:

- 1. Complete separate federal permitting application materials to determine applicability of nonattainment, PSD, and GHG PSD applicability, including netting if applicable. Include this analysis in your permit application.
- 2. Section I: determine the attainment classification of the county where the proposed project will be located.
 - a. Indicate if the project requires retrospective review. If so, complete the associated questions.
 - b. The county is entered based on the response on the General Sheet.
 - c. If the site is located in a county that is partially nonattainment for a pollutant, indicate whether the site is in that portion of the county.
 - d. If desired, use the optional dropdown to indicate the ozone nonattainment classification this project should be reviewed under. This allows you to account for anticipated reclassifications.
- 3. Section II: PSD and GHG PSD and Section III: Nonattainment applicability summaries
 - a. Enter the project increase for each pollutant. Depending on the step of applicability required, this may be the increases only for the proposed project or may include all increases/decreases during the contemporaneous period if the project requires netting. If doing netting, the values entered here should be after netting has been conducted.
 - b. Enter the applicable thresholds for each pollutant. This will vary depending on the type of project. For example, an unnamed source at a greenfield site with minor emissions may use the 250 tpy thresholds and an existing major source may use the significant emission rates.
 - c. If the project is not located in a nonattainment county, Section III will grey out.
- 4. Sections IV and V: Offsets
 - a. If nonattainment permitting is required, the applicable offset ratio and quantity will be listed.
 - b. Provide details of where the offsets will be coming from, listing one or more of these options: emission credits (ERCs or DERCs), inter-pollutant use of credits, inter-area use of credits, MECT allowances, HECT allowances, and/or to be determined.
 - c. If inter-pollutant use of credits will be utilized to offset the project, please ensure all required information is submitted to the Emissions Banking and Trading Team. The technical analysis for any site-specific inter-pollutant use of credits must be approved prior to the date that the permit application is deemed technically complete.

Guidance for Determining Project Increases	https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/New	
	SourceReview/fnsr_app_determ.pdf	
Guidance for Determining Federal Applicability Thresholds	https://www.tceq.texas.gov/assets/public/permitting/air/factsheets/fact	
	sheets-psd-na-sigemiss-6240.pdf	

I. County Classification			
Does the project require retrospective review?	No		
County (completed for you from your response on the General sheet)	Harris		
This project will be located in an area that is in serious nonattainment for ozone as of Sept. 23, 2019. Select from the drop-down list to the right if you would like the project to be reviewed under a different classification.	Ozone - Serious		
classification, and the	ated in a county with a Serious Ozone nonattainment project will be reviewed under a Serious Ozone nonattainment te the nonattainment section below and provide an analysis with		

Determination:

the application.

Texas Commission on Environmental Quality Form PI-1 General Application Federal Applicability

Date: June 2, 2020 Permit #: 9423

II. PSD and GHG PSD Applicability Summary				
Is netting required for the PSD analysis for this project?		No		
Pollutant	Project Increase	Threshold	PSD Review Required?	
со	0.04	100	No	
NO _x	0	40	No	
PM	12.34	25	No	
PM ₁₀	0.7	15	No	
PM _{2.5}	0.27	10	No	
SO ₂	0	40	No	
Pb	0	0.6	No	
H ₂ S	0	10	No	
TRS	0	10	No	
Reduced sulfur compounds (including H ₂ S)	0	10	No	
H ₂ SO ₄	0	7	No	
Fluoride (excluding HF)	0	3	No	
CO2e	0	than zero as GHG and 75,000 a	No	

III. Nonattainment Applicability Summary				
Is netting required for the nonattainment analysis for this project?			No	
Pollutant	Project Increase	Threshold	NA Review Required?	
Ozone (as VOC)	2.47	25	No	
Ozone (as NO _x)	0	25	No	

IV. Offset Summary (for Nonattainment Permits)			
Pollutant	Offset Ratio	Offset Quantity Required (tpy)	Where is the offset coming from?

Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

Estimated Capital Cost and Fee Verification

This sheet determines application fee requirements for projects which require a fee. If you can see the page header, there are questions applicable to your project on this sheet.

Fees are due and payable at the time an application is filed. Required fees must be received before the agency will consider an application to be complete.

For amendment/initial actions: Applications will not be considered for review nor will any time constraints required of TCEQ for application processing begin until a fee is received. (30 TAC § 116.143)

For renewal actions: No fee will be accepted before the permit holder has been notified by the commission that the permit is scheduled for review.

All permit review fees shall be remitted by check, certified check, electronic funds transfer, or money order payable to the Texas Commission on Environmental Quality (TCEQ) and mailed to the TCEQ, P.O. Box 13088, MC 214, Austin, Texas 78711-3088. The State Treasury will not accept checks drawn on foreign banks. Instructions for online payment through the ePay system can be found at: https://www3.tceq.texas.gov/epay/

Instructions:

- 1. Answer each of the questions in Section I (renewal actions only).
- 2. Enter the amount of each cost in the associated box. Include estimated cost of equipment and services that would normally be capitalized according to standard and generally accepted corporate financing and accounting procedures (non-renewal actions only).
- 3. Enter the total annual allowable emissions from the permitted facility to be renewed (renewal actions only).
- 4. Enter payment information.
- 5. If applicable, submit the application under the seal of a Texas Licensed P.E.

Click here to return to Cover Sheet.		
I. General Information - Non-Re	enewal	
Is this project for new facilities controlled and operated directly by the federal government? (30 TAC § 116.141(b)(1) and 30 TAC § 116.163(a))		No
A fee of \$75,000 shall be required if no estimate of capital project of permit application. (30 TAC § 116.141(d)) Select "yes" here to use t sections II and III.		No
Select Application Type	Minor Application	

II. Direct Costs - Non-Renewal		
Type of Cost	Amount	
Process and control equipment not previously owned by the applicant and not		
currently authorized under this chapter.		
Auxiliary equipment, including exhaust hoods, ducting, fans, pumps, piping, conveyors, stacks, storage tanks, waste disposal facilities, and air pollution control equipment specifically needed to meet permit and regulation requirements.		

Version 4.0 Fees

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Freight charges.	
Site preparation, including demolition, construction of fences, outdoor lighting,	
road, and parking areas.	
Installation, including foundations, erection of supporting structures, enclosures	
or weather protection, insulation and painting, utilities and connections, process	
integration, and process control equipment.	
Auxiliary buildings, including materials storage, employee facilities, and changes	
to existing structures.	
Ambient air monitoring network.	
Sub-Total:	\$0.00

III. Indirect Costs - Non-Renewal					
Type of Cost	Amount				
Final engineering design and supervision, and administrative overhead.					
Construction expense, including construction liaison, securing local building permits, insurance, temporary construction facilities, and construction clean-up.					
Contractor's fee and overhead.					
Sub-Total:	\$0.00				

IV. Calculations - Non-Renewal

For GHG permits: A single PSD fee (calculated on the capital cost of the project per 30 TAC § 116.163) will be required for all of the associated permitting actions for a GHG PSD project. Other NSR permit fees related to the project that have already been remitted to the TCEQ can be subtracted when determining the appropriate fee to submit with the GHG PSD application. Identify these other fees in the GHG PSD permit application.

In signing the "General" sheet with this fee worksheet attached, I certify that the total estimated capital cost of the project as defined in 30 TAC §116.141 is equal to or less than the above figure. I further state that I have read and understand Texas Water Code § 7.179, which defines Criminal Offenses for certain violations, including intentionally or knowingly making, or causing to be made, false material statements or representations.

Estimated Capital Cost	Minor Application Fee	
Less than \$300,000	\$900 (minimum fee)	
\$300,000 - \$7,500,000	N/A	
\$300,000 - \$25,000,000	0.30% of capital cost	
Greater than \$7,500,000	N/A	
Greater than \$25,000,000	\$75,000 (maximum fee)	

Your estimated capital cost:	\$0.00	Minimum fee applies.
Permit Application Fee:		\$900.00

V. Renewal Fee

Version 4.0 Fees

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

The fee for renewal is based on the total annual allowable emissions from the permitted facility to be renewed. If this project includes an amendment, the amendment permit fee will be calculated separately.				
Enter the total allowable emissions (tons per year). The total emissions must include those represented in any PBR or standard permits to be incorporated by consolidation into this permit.		325.51		
Permit fee due	\$	6,083.12		

VI. Total Fees					
Note: fees can be paid together with one payment or as two separate payments.					
Non-Renewal Fee		\$900.00			
Renewal Fee	\$	6,083.12			
Total		\$6,983.12			

VII. Payment Information						
A. Payment One (required)						
Was the fee paid online?		No				
Enter the fee amount:		\$	6,983.12			
Enter the check, money order, ePay Voucher, or other transaction number:			580301			
Enter the Company name as it appears on the check:	Equistar Chemicals, L.P.					
B. Payment Two (if paying renewal and non-renewal fees sepa	rately)					
Was the fee paid online?		No				
Enter the fee amount:						
Enter the check, money order, ePay Voucher, or other transaction number:	N/A					
Enter the Company name as it appears on the check:						
C. Total Paid			\$6,983.12			

VIII. Professional Engineer Seal Requirement					
Is the estimated capital cost of the project above \$2 million?	No				
Is the application required to be submitted under the seal of a Texas licensed P.E.?	No				
Note: an electronic PE seal is acceptable.					

Version 4.0 Fees

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Impacts Summary

This sheet provides a summary of how the impacts review was conducted for each pollutant. If you can see the page header, there are questions applicable to your project on this sheet.

Instructions:

- 1. Ozone, VOC, and all pollutants listed on the Unit Types-Emission Rates sheet are automatically listed below.
- 2. Select "yes" or "no" to indicate if the project requires PSD review for each pollutant.
- 3. Select the method used to demonstrate acceptable impacts.
- 4. Read all notes for additional instructions.
- 5. Add additional notes if desired such as a short qualitative analysis or other note to your permit reviewer.

Notes:

- 1. An air quality impacts demonstration is required for all projects with consolidated, new, and/or modified facilities or sources of emissions of air contaminants. Changes to representations, such as stack height, may also require an impacts demonstration.
- 2. An air quality impacts demonstration may be required for Change of Location requests to demonstrate protection of public health and welfare. (30 TAC § 116.178(f))
- 3. Modeling is not always required to complete an impacts analysis.

Links to help with Impacts Analyses							
MERA guidance	https://www.tceg.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/mera.pdf						
Modeling website	Modeling website https://www.tceq.texas.gov/permitting/air/nav/modeling_index.html						
Air Quality Modeling Guidelines	https://www.tceq.texas.gov/assets/public/permitting/air/Modeling/quidance/airquality-mod-quidelines6232.pdf						
PSD protocol guidance	https://www.tceq.texas.gov/assets/public/permitting/air/Modeling/guidance/protocol-checklist.pdf						
GHG permitting guidance	https://www.tceg.texas.gov/permitting/air/guidance/newsourcereview/ghg/ghg-permitting.html						

Click here to return to Cover Sheet.

Pollutant	Does this pollutant require PSD review?	How will you demonstrate that this project meets all applicable requirements?	Notes	Additional Notes (optional)
voc	No	MERA steps 0-2 AND Modeling (screen or refined)	Attach both an "Electronic Modeling Evaluation Workbook" (EMEW) AND a detailed description of which MERA step was met. Include speciated emission rates with the total VOC and/or PM species corresponding to the short-term and long-term differences represented on the Unit Types-Emission Rates sheet.	Please reference the New Source Review Air Quality Permit No. 9423 Renewal and Amendment Application Document.
co	No	Not applicable	This pollutant is not a part of this project or does not require an impacts analysis.	N/A
NOx	No	Not applicable	This pollutant is not a part of this project or does not require an impacts analysis.	N/A
SO2	No	Not applicable	This pollutant is not a part of this project or does not require an impacts analysis.	N/A
PM	No	Not applicable	This pollutant is not a part of this project or does not require an impacts analysis.	N/A
PM10	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).	Please reference the New Source Review Air Quality Permit No. 9423 Renewal and Amendment Application Document.
PM2.5	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).	Please reference the New Source Review Air Quality Permit No. 9423 Renewal and Amendment Application Document.
H2SO4	No	Modeling: screen or refined	Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).	Please reference the New Source Review Air Quality Permit No. 9423 Renewal and Amendment Calculations

Version 4.0 Impacts

Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

Pollutant	require PSD	How will you demonstrate that this project meets all applicable requirements?	Notes	Additional Notes (optional)
Exempt Solvents	No	INOT ANNICANIE	This pollutant is not a part of this project or does not require an impacts analysis.	N/A

Version 4.0 Impacts

Texas Commission on Environmental Quality Form PI-1 General Application BACT Commission on Environmental Quality

Date: June 2, 2020 Permit #: 9423

Plant Type				Current Tier I BACT	Confirm	Additional Notes
Antina Danuarta d	Irin-	H-i-T-m-	D-U-tt	Comment Tire I DAGT	0	A July and Natura
Action Requested Renew only	FINs FL-3706	Unit Type Control: Flare	VOC	Current Tier I BACT VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to three carbons, 98% otherwise. No flaring of halogenated compounds is allowed.	Confirm Yes	Additional Notes
			00	Flow monitor required. Composition or BTU analyzer may be required.	V	0.3465 lb/MMBtu as per TCEQ Publication RG-360/19 Technical
			СО	Provide emission factor used and reference.	Yes	Supplement 4, Table A-7, TCEQ Air Permits Flare Emission Factors. Steam Assisted/Low Btu Flares. 0.068 lb/MMBtu as per TCEQ Publication RG-360/19 Technical
			NOx	Provide emission factor used and reference.	Yes	Supplement 4, Table A-7, TCEQ Air Permits Flare Emission Factors. Steam Assisted/Low Btu Flares.
			SO2	Provide emission factor used and reference.	Yes	15.00 lb/mmscf as per AP-42 Section 1.4 , Table 1.4-2, dated 7/98.
			MSS	Same as normal operation BACT requirements. Specify option:	Yes	Continue O. V. (200 - 200 E or in contrata to V. (200 contrata desirent or
Renew only	D-885	Loading: Truck	voc	VOC vp < 0.5 psia: submerged or bottom loading. No splash loading. VOC vp ≥ 0.5 psia: route to VOC control device and meet the specific control	Yes	Option 2: VOC vp ≥ 0.5 psia: route to VOC control device and meet the specific control device requirements. 98.7% collection efficiency for annual NSPS leak check.
				device requirements. 98.7% collection efficiency for annual NSPS XX leak check.		ioi ainida No. O Idak Gibbik
Now/Madified	DD ANALYZED	Analyzer comple system purges	MSS	Same as normal operation BACT requirements.	Yes Yes	Vanulau amianiana na aastral in propagad
New/Modified	PP-ANALIZER	Analyzer sample system purges	VOC CO NOx	See additional notes: See additional notes: See additional notes:	Yes Yes	Very low emissions; no control is proposed. Very low emissions; no control is proposed. Very low emissions; no control is proposed.
			MSS	See additional notes: Non-contact design. Monthly monitoring of VOC in water per Appendix P or	Yes	Very low emissions; no control is proposed.
New/Modified	CT-895	Cooling Tower	VOC	approved equivalent (assume all VOC stripped out). Repair identified leaks as soon as possible, but before next scheduled shutdown, or shutdown triggered by 0.08 ppmw cooling water VOC concentration.	Yes	
			PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. Drift < 0.001% achieved by drift eliminators	Yes	
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	CT-6901	Cooling Tower	voc	Non-contact design. Monthly monitoring of VOC in water per Appendix P or approved equivalent (assume all VOC stripped out). Repair identified leaks as soon as possible, but before next scheduled shutdown, or shutdown triggered by 0.08	Yes	
			PM	ppmw cooling water VOC concentration. The emission reduction techniques for PM10 and PM2.5 will follow the technique	Yes	
				for PM. Drift < 0.001% achieved by drift eliminators		
			MSS	Same as normal operation BACT requirements.	Yes	
Renew only	CT-891	Cooling Tower	VOC	Non-contact design. Monthly monitoring of VOC in water per Appendix P or approved equivalent (assume all VOC stripped out). Repair identified leaks as soon	Yes	
Renew only	01-031	Cooling Tower		as possible, but before next scheduled shutdown, or shutdown triggered by 0.08 ppmw cooling water VOC concentration. The emission reduction techniques for PM10 and PM2.5 will follow the technique		
			РМ	The emission reduction techniques for PM to and PM2.5 will follow the technique for PM. Drift < 0.001% achieved by drift eliminators	Yes	
Renew only	CT-4861	Cooling Tower	MSS PM	Same as normal operation BACT requirements. The emission reduction techniques for PM10 and PM2.5 will follow the technique	Yes Yes	
. CHEW OHLY	51-7001	Cooking Tower	. 101	for PM. Drift < 0.001% achieved by drift eliminators	165	

Texas Commission on Environmental Quality Form PI-1 General Application BACT Commission of Environmental Quality

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Action Degreested	FINI-	Half Tone	D-III-tt	Comment Tire I DAGT	0	Additional Notes
Action Requested	FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	D-3106	Process Vent	voc	Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
New/Modified	D-3106B	Process Vent	VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
			MSS	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	Yes	
New/Modified	D-3504	Process Vent	voc	Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
			PM	adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. < 0.01 gr/scf	Yes	
				M.		
Renew only	D-3103	Process Vent	VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
				adasiption. Opening technique, must meet that control device's approved emolency.		
Renew only	D-3105	Process Vent	MSS VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon	Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
			MSS	Same as normal operation RACT requirements	Voc	
Renew only	D-3107	Process Vent	VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
				and the state of t		
			MSS	Same as normal operation BACT requirements.	Yes	

Version 4.0 BACT

Texas Commission on Environmental Quality Form PI-1 General Application BACT Commission on Environmental Quality

Date: June 2, 2020 Permit #: 9423

Action Requested Renew only	PINS D-3110A	Process Vent	VOC VOC	Current Tier I BACT Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	Additional Notes All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
New/Modified	D-3113	Process Vent	MSS VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
Renew only	T-3111	Process Vent	VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flere, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
		Fugitives: Piping and Equipment	MSS	Same as normal operation BACT requirements. Specify which is applicable: 1. Uncontrolled VOC emissions < 10 tpy: none 2. 10 tpy < uncontrolled VOC emissions < 25 tpy: 28M leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair	Yes	Option 2 is being used with modifications as per the TCEQ Technical Guidance for Equipment Leak Fuglitives (2018) with additional AVO
Renew only	C-FUG	Leak	VOC	program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfilde, hydrogen cyanide and mercaptans only): AVO inspection twice per shift. Appropriate rectif for AVO program.	Yes	credit for weekly inspections. The credits taken are 97% for valves, 75% for flanges, and 93% for pumps.
New/Modified	TK-2527A	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	MSS VOC	Same as normal operation BACT requirements. Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be white or aluminum.	Yes Yes	
			MSS	Same as normal operation BACT requirements except as listed below. Fixed roof tank draining: VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control device must meet BACT. Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control device must meet BACT.	Yes	
New/Modified	TK-2527B	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	VOC	Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be white or aluminum.	Yes	

Texas Commission on Environmental Quality Form PI-1 General Application BACT Commission of Environmental Quality

Date: June 2, 2020 Permit #: 9423

Nomination of the control operation (Note 1) (No	Action Requested	FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
Proceedings of the process of the pr							
NewModified D-4100 Process Viert VCC NewModified D-4100 Process Viert VCC NewModified D-4500 Process Viert				MSS	Fixed roof tank draining: VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control device must meet BACT. Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the acid vapor pressure is less than	Yes	
Process Vert NewModified D-4106 Process Vert VCC	New/Modified	TK-880	capacity < 25,000 gal or TVP < 0.50	voc		Yes	
Process Vert NewModified D-4106 Process Vert VCC							
Process Vent NewModified D-4106 Process Vent VCC Service flower flower as a consequence of the Authority flower is any standing liquid within the tank, and the tank is opened to the authorisphere of ventillated, the vegor stream must be constructed with the rise in saturating liquid or the VCC separations in less than Acids Danis to covered sessel. If there is any standing liquid within the tank, and the tank is opened to the authorisphere of ventillated, the vegor stream must be constructed with the rise is saturating liquid or the acid vegor pressure is less than a covered ventillated or the saturation of the process of the acid vegor pressure is less than a covered ventillated or the saturation of the process of the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated vegor pressur							
Process Verd D-106 Process Verd VCC NewModified D-107 Process Verd VCC Assignment of the Assig							
Process Vent NewModified D-4106 Process Vent VCC Service flower flower as a consequence of the Authority flower is any standing liquid within the tank, and the tank is opened to the authorisphere of ventillated, the vegor stream must be constructed with the rise in saturating liquid or the VCC separations in less than Acids Danis to covered sessel. If there is any standing liquid within the tank, and the tank is opened to the authorisphere of ventillated, the vegor stream must be constructed with the rise is saturating liquid or the acid vegor pressure is less than a covered ventillated or the saturation of the process of the acid vegor pressure is less than a covered ventillated or the saturation of the process of the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated vegor pressur							
Process Verd D-106 Process Verd VCC NewModified D-107 Process Verd VCC Assignment of the Assig							
Process Vent NewModified D-4106 Process Vent VCC Service flower flower as a consequence of the Authority flower is any standing liquid within the tank, and the tank is opened to the authorisphere of ventillated, the vegor stream must be constructed with the rise in saturating liquid or the VCC separations in less than Acids Danis to covered sessel. If there is any standing liquid within the tank, and the tank is opened to the authorisphere of ventillated, the vegor stream must be constructed with the rise is saturating liquid or the acid vegor pressure is less than a covered ventillated or the saturation of the process of the acid vegor pressure is less than a covered ventillated or the saturation of the process of the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated or the acid vegor pressure is less than a covered ventillated vegor pressur					Same as normal operation BACL requirements except as listed below.		
NewModified D-4106 Process Vent VCC Histogenated VCC. Thermal codation followed by absorber/surbuber carbon advanced and control devices approved efficiency. Histogenated VCC. Thermal codation followed by absorber/surbuber carbon advanced and control devices approved efficiency. MSS Same as normal operation BACT requirements. Non-halogenated VCCs. Flare, any outdoor, absorber/surbuber, etc. Specify technique. Must meet that control devices approved efficiency. Histogenated VCCs. Flare, any outdoor, absorber/surbuber, etc. Specify technique. Must meet that control devices approved efficiency. Histogenated VCCs. Flare, any outdoor, absorber/surbuber, etc. Specify technique. Must meet that control devices approved efficiency. Histogenated VCCs. Flare any outdoor, absorber/surbuber, etc. Specify technique. Must meet that control devices approved efficiency. Histogenated VCCs. Flare any outdoor, absorber/surbuber, etc. Specify technique. Must meet that control devices approved efficiency. Histogenated VCC. Thermal codation followed by absorber/surbuber, etc. Specify technique. Must meet that control devices approved efficiency. Histogenated VCCs. Flare any outdoor, absorber/surbuber, etc. Specify technique. Must meet that control devices approved efficiency. Histogenated VCCs. Flare any outdoor, absorber/surbuber, etc. Specify technique. Must meet that control devices approved efficiency. Histogenated VCCs. Flare any outdoor, absorber/surbuber, etc. Specify technique, Must meet that control devices approved efficiency. Histogenated VCCs. Flare and outdoor advanced according to the service and outdoor according to the service and the ser				MSS	Fixed roof tank draining: VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control device must meet BACT. Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control device must meet BACT.	Yes	
NewModified D-4504 Process Vent MSS Same as normal operation BACT requirements. Non-halogenated VOC: Thermal oxidation followed by absorber/scrubber, etc. Specify is chinque. Must meet that control device's approved efficiency. MSS Same as normal operation BACT requirements. Non-halogenated VOC: Thermal oxidation followed by absorber/scrubber, etc. Specify is chinque. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber, etc. Specify is chinque. Must meet that control device approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber, etc. Specify is chinque. Must meet that control device approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber, etc. Specify is chinque. Must meet that control devices approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber, etc. Specify is chinque. Must meet that control devices approved efficiency. Yes At VOC veris having a concentration of 100 ppmw VOC in program approved efficiency. Yes At VOC veris having a concentration of 100 ppmw VOC in program approved efficiency. Yes At VOC veris having a concentration of 100 ppmw VOC in program approved efficiency. Yes At VOC veris having a concentration of 100 ppmw VOC in program approved efficiency. Yes At VOC veris having a concentration of 100 ppmw VOC in program approved efficiency. Yes 1. Uncontrolled VOC efficiency. Yes D-FUG Fugilives Piping and Equipment Leak VOC verision of 25 by 28 VPI leak detection and repair program. 7% credit for very impactions. 1. Uncontrolled VOC emissions > 25 by 28 VPI leak detection and repair program. 7% credit for very impactions. Yes Quidance for Equipment Leak Equipment Leak Yes Quidance for Equipment Leak Yes Yes Yes					Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.		All VOC vents having a concentration of 100 nnmw VOC in propular
NewModified D-4504 Process Vent VOC Halogenated VOC: Thermal codation followed by absorber/scrubber, etc. Specify technique. Make the that control device's approved efficiency. Halogenated VOC: Thermal codation followed by absorber/scrubber carbon vent of the process vent vocation of the mission reduction techniques for PM 10 and PM2.5 will follow the lacknique or greater shall be vented to a control device. Yes or greater shall be vented to a control device.	New/Modified	D-4106	Process Vent	VOC	Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon	Yes	
New/Modified D-4504 Process Vent VOC Non-halogenated VOCs: flare, any oxidizer, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions FWM. Quity or process Vent PM Non-halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions The emission reduction to the technique or process of the p					adsorption. Specify technique. Must meet that control device's approved efficiency.		
New/Modified D-4504 Process Vent VOC Non-halogenated VOCs: flare, any oxidizer, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions FWM. Quity or process Vent PM Non-halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions The emission reduction to the technique or process of the p							
New/Modified D-4504 Process Vent VOC Non-halogenated VOCs: flare, any oxidizer, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions FWM. Quity or process Vent PM Non-halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions The emission reduction to the technique or process of the p							
New/Modified D-4504 Process Vent VOC Non-halogenated VOCs: flare, any oxidizer, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions FWM. Quity or process Vent PM Non-halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions The emission reduction to the technique or process of the p							
New/Modified D-4504 Process Vent VOC Non-halogenated VOCs: flare, any oxidizer, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions FWM. Quity or process Vent PM Non-halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions The emission reduction to the technique or process of the p							
New/Modified D-4504 Process Vent VOC Non-halogenated VOCs: flare, any oxidizer, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions FWM. Quity or process Vent PM Non-halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reductions The emission reduction to the technique or process of the p							
NewModified D.4504 Process Vent VOC Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique, Must meet that control devices approved efficiency. The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. < 0.01 gr/scf WSS Same as normal operation BACT requirements. Specify with the special program. For the program is the program. For the program is the program of the program. For the program is the program in the program is the program. For the program is the program in the program is the program is the program is the program in the program				MSS	Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	Yes	
Adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reduction technique's for PM10 and PM2.5 will follow the technique for PM. < 0.01 gr/scf MSS Same as normal operation BACT requirements. Specify which is approximately a specific for the control of the cont	New/Modified	D-4504	Process Vent	voc		Yes	All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device.
Renew only D-FUG Fugilives: Piping and Equipment Leak VOC Journal Fugilives: Piping and Equipment Leak VOC Journal Fugilives: Piping and Equipment Leak VOC Journal Fugilives: Piping and Equipment Leak VOC Journal Fugilives: Piping and Equipment Leak VOC Journal Fugilives: Piping and Equipment Leak Journal Fugilives: Piping and Equipment Leak VOC Journal Fugilives: Piping and Equipment Leak Journal Fugilives: Piping and Equipment Journal Fugilives: Piping and					adsorption. Specify technique. Must meet that control device's approved efficiency. The emission reduction techniques for PM10 and PM2.5 will follow the technique.		
Renew only D-FUG Fugitives: Piping and Equipment Leak VOC 3. Uncontrolled VOC emissions < 25 tpy: 28VHP leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vy < 0.002 psis: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen suffide, hydrogen cyanide and mercaptans only); AVO inspection twice per shift.				РМ	for PM. < 0.01 gr/scf	Yes	
Renew only D-FUG Fugitives: Piping and Equipment Leak VOC 3. Uncontrolled VOC emissions < 25 tpy: 28VHP leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vy < 0.002 psis: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen suffide, hydrogen cyanide and mercaptans only); AVO inspection twice per shift.							
Renew only D-FUG Fugitives: Piping and Equipment Leak VOC 3. Uncontrolled VOC emissions < 25 tpy: 28VHP leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vy < 0.002 psis: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen suffide, hydrogen cyanide and mercaptans only); AVO inspection twice per shift.							
Renew only D-FUG Fugitives: Piping and Equipment Leak VOC 3. Uncontrolled VOC emissions < 25 tpy: 28VHP leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vy < 0.002 psis: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen suffide, hydrogen cyanide and mercaptans only); AVO inspection twice per shift.							
Renew only D-FUG Fugitives: Piping and Equipment Leak VOC 3. Uncontrolled VOC emissions < 25 tpy: 28VHP leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vy < 0.002 psis: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen suffide, hydrogen cyanide and mercaptans only); AVO inspection twice per shift.							
Renew only D-FUG Fugitives: Piping and Equipment Leak VOC 3. Uncontrolled VOC emissions < 25 tpy: 28VHP leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vy < 0.002 psis: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen suffide, hydrogen cyanide and mercaptans only); AVO inspection twice per shift.				MSS	Same as normal operation BACT requirements.	Yes	
Renew only D-FUG Fugiltives: Piping and Equipment Leak VOC 3. Uncontrolled VOC emissions > 25 tpy; 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vy < 0.002 psis: no inspection required, no fugilitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen oyanide and mercaptans only); AVO inspection twice per shift.					Specify which is applicable:		
Renew only D-FUG Fugitives: Piping and Equipment Leak VOC 3. Uncontrolled VOC emissions > 25 typ: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen suffide, hydrogen cyanide and mercaptans only); AVO inspection twice per shift.					2. 10 tpy < uncontrolled VOC emissions < 25 tpy: 28M leak detection and repair		
renew only Leak VOC program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift.			Eugitives: Dining and Equipment				Option 2 is being used with modifications as per the TCEQ Technica
4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift.	Renew only	D-FUG		VOC		Yes	credit for weekly inspections. The credits taken are 97% for valves,
sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift.					4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected.		Total of manges, and core for pumps.
Annroniate credit for AVO program					For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only); AVO inspection twice per shift.		
					Appropriate credit for AVO program		
MSS Same as normal operation BACT requirements. Yes Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.				MSS	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	Yes	
Renew only D-4105 Process Vent VOC Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon regreater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in proor greater shall be vented to a control device.	Renew only	D-4105	Process Vent	voc		Yes	All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device.
adsorption. Specify technique. Must meet that control device's approved efficiency.							
MSS Same as normal operation BACT requirements. Yes				MSS	Same as normal operation BACT requirements.	Yes	

Texas Commission on Environmental Quality Form PI-1 General Application BACT Commission on Environmental Quality

Date: June 2, 2020 Permit #: 9423

	I	I		I		
Action Requested Renew only	FINS D-4107	Unit Type Process Vent	VOC	Current Tier I BACT Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	Additional Notes All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
Renew only	D-4110A	Process Vent	VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flere, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
Renew only	D-4110B	Process Vent	MSS VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
Renew only	T-4111	Process Vent	WSS VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
			MSS	Same as normal operation BACT requirements.	Yes	
Renew only	D-4103	Process Vent	VOC	Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
				On a constant and a DICT		
New/Modified	D-6106A	Process Vent	VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
New/Modified	D-6106B	Process Vent	MSS VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon	Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
				adsorption. Specify technique. Must meet that control device's approved efficiency.		

	1	I =	1	I		Tarania and a
Action Requested	FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
			MSS	Same as normal operation BACT requirements.	Yes	
				Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.		
New/Modified	D-6504	Process Vent	VOC		Yes	All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device.
				Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.		or ground shall be verted to a contact device.
			DM	The emission reduction techniques for PM10 and PM2.5 will follow the technique	V	
			PM	for PM. < 0.01 gr/scf	Yes	
			MSS	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	Yes	
				Specify technique. Must meet that control device's approved efficiency.		All VOC vents having a concentration of 100 ppmw VOC in propylen
Renew only	D-6103	Process Vent	VOC	Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device.
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
			Mee	Same as parmal aparation BACT requirements	Vac	
			MSS	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	Yes	
Danasa anh	D 0405	December 1/2mt	V00	Specify technique. Must meet that control device's approved efficiency.		All VOC vents having a concentration of 100 ppmw VOC in propylen
Renew only	D-6105	Process Vent	VOC	Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device.
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
			MSS	Same as normal operation BACT requirements.	Yes	
			iiioo	Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	103	
Renew only	D-6105B	Process Vent	VOC	Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylen
renew only	D-0103B	Troccas vent	100	Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon	103	or greater shall be vented to a control device.
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
			MSS	Same as normal operation BACT requirements.	Yes	
			MSS	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	Yes	
Renew only	D-6107	Process Vent	MSS	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.	Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon		All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device.
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.		All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device.
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon		All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device.
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon		All VOC vents having a concentration of 100 ppmw VOC in propyler or greater shall be vented to a control device.
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon		All VOC vents having a concentration of 100 ppmw VOC in propyler or greater shall be vented to a control device.
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon		All VOC vents having a concentration of 100 ppmw VOC in propyler or greater shall be vented to a control device.
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon		All VOC vents having a concentration of 100 ppmw VOC in propyler or greater shall be vented to a control device.
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon		All VOC vents having a concentration of 100 ppmw VOC in propyler or greater shall be vented to a control device.
Renew only	D-6107	Process Vent	voc	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propyler or greater shall be vented to a control device.
Renew only	D-6107	Process Vent		Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.		All VOC vents having a concentration of 100 ppmw VOC in propyler or greater shall be vented to a control device.
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes	or greater shall be vented to a control device.
,	D-6107	Process Vent Process Vent	voc	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.	Yes	or greater shall be vented to a control device.
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			wss voc	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes Yes Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
,			VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements.	Yes	or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propyler
Renew only	D-6110A	Process Vent	MSS VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.	Yes Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propyler or greater shall be vented to a control device.
Renew only			wss voc	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.	Yes Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device.
Renew only Renew only	D-6110A	Process Vent	MSS VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.	Yes Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device. All VOC vents having a concentration of 100 ppmw VOC in propylen
Renew only	D-6110A	Process Vent	MSS VOC	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency. Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. Halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.	Yes Yes Yes	All VOC vents having a concentration of 100 ppmw VOC in propylen or greater shall be vented to a control device.

Action Requested	FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
•						
			MSS	Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc.	Yes	
Renew only	T-6111	Process Vent	voc	Specify technique. Must meet that control device's approved efficiency.	Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene
Í				Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.		or greater shall be vented to a control device.
				adsorption. Openity technique, must meet that control devices approved emoining.		
			MSS	Same as normal operation BACT requirements.	Yes	
				Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.		
New/Modified	D-6113	Process Vent	voc		Yes	All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device.
				Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficiency.		-
			MSS	Same as normal operation BACT requirements. Specify which is applicable:	Yes	
				Uncontrolled VOC emissions < 10 tpy: none		
				2. 10 tpy < uncontrolled VOC emissions < 25 tpy: 28M leak detection and repair		
				program. 75% credit for 28M.		Option 2 is being used with modifications as per the TCEQ Technical
New/Modified	E-FUG	Fugitives: Piping and Equipment Leak	voc	Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors.	Yes	Guidance for Equipment Leak Fugitives (2018) with additional AVO credit for weekly inspections. The credits taken are 97% for valves,
		Louis				75% for flanges, and 93% for pumps.
				VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected.		
				For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift.		
				Appropriate credit for AVO program		
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	M-2573	Control: Bag Filter/Baghouse	VOC	See Additional Notes:		VOC is part of E-CAP. See below for more information.
			PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
			MSS	Same as normal operation BACT requirements.	Yes	
Renew only	M-2574	Control: Bag Filter/Baghouse	VOC	See Additional Notes: The emission reduction techniques for PM10 and PM2.5 will follow the technique	Yes	VOC is part of E-CAP. See below for more information.
			PM	for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	M-42591	Control: Bag Filter/Baghouse	VOC	See Additional Notes: The emission reduction techniques for PM10 and PM2.5 will follow the technique	Yes	VOC is part of E-CAP. See below for more information.
			РМ	for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	F-583	Control: Bag Filter/Baghouse	VOC	See Additional Notes: The emission reduction techniques for PM10 and PM2.5 will follow the technique	Yes	VOC is part of E-CAP. See below for more information.
			PM	for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	

Company Name: Equistar Chemicals, L.P.

Action Requested	FINs	Unit Type	Pollutant	Coursest Tier I DACT	Confirm	Additional Nates
Action Requested	FINS	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
			моо	Company of the parties DACT are viscoursets	V	
New/Modified	S-2580	Control: Bag Filter/Baghouse	WSS VOC	Same as normal operation BACT requirements. See Additional Notes:	Yes Yes	VOC is part of E-CAP. See below for more information.
			PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
			MSS	Same as normal operation BACT requirements.	Yes	
				Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency.		
Renew only	D-4801-03	Process Vent	VOC	Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon	Yes	VOC is part of E-CAP. See below for more information.
				adsorption. Specify technique. Must meet that control device's approved efficiency.		
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	F-4842	Control: Bag Filter/Baghouse	VOC	See Additional Notes:		VOC is part of E-CAP. See below for more information.
			PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	F-5101	Control: Bag Filter/Baghouse	VOC	See Additional Notes: The emission reduction techniques for PM10 and PM2.5 will follow the technique		VOC is part of E-CAP. See below for more information.
			PM	for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
New/Modified	F-6802	Control: Bag Filter/Baghouse	WSS VOC	Same as normal operation BACT requirements. See Additional Notes:	Yes Yes	VOC is part of E-CAP. See below for more information.
			РМ	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
				and borogenous		
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	F-5303	Control: Bag Filter/Baghouse	VOC PM	See Additional Notes: The emission reduction techniques for PM10 and PM2.5 will follow the technique		VOC is part of E-CAP. See below for more information.
			r ivi	for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
New/Modified	F-6841-42	Control: Bag Filter/Baghouse	WSS VOC	Same as normal operation BACT requirements. See Additional Notes:	Yes Yes	VOC is part of E-CAP. See below for more information.
			PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
				5.01 grussi. monitoring will be required.		
			MSS	Same as normal operation BACT requirements.	Yes	

Version 4.0 BACT

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

	I	I		I		Tarania and d
Action Requested Renew only	E-CAP	Unit Type Cap on VOC emissions	VOC	See additional notes:	Yes	Additional Notes This is a cap on VOC emissions for the operations downstream of the dryer associated with transfer, extrusion, storage, and loading of product. Sampling of the headspace in the product sample is conducted. Continued periodic sampling of the product is proposed as BACT to ensure emissions comply with the limits.
			MSS	See additional notes:	Yes	Same as normal operation BACT requirements.
Renew only	PP-WWTR	Wastewater Facilities	voc	Applicable for organics and inorganics. Uncontrolled site-wide wastewater emissions < 5 tpy VOC: Piped and covered conveyance to storage or biological treatment. Uncontrolled site-wide wastewater emissions > 5 tpy VOC: stripped gases from pretreatment routed to a control device, collection system hard piped/covered conveyance to biological treatment unit vented to a control device, wastewater treatment system must be at least 90 percent efficient.	Yes	Uncontrolled site-wide wastewater emissions are <5 tpy VOC: Piped and covered conveyance to storage or biological treatment.
			MSS	Same as normal operation RACT requirements	Voc	Same as normal operation PACT requirements
Now/Modified	MCC44	MCC Activitie -	MSS	Same as normal operation BACT requirements.	Yes	Same as normal operation BACT requirements. Very low emissions that occur after the vessel has been purged to
New/Modified	MSS41	MSS Activities	VOC	See Additional Notes:	Yes	the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	
New/Modified	MSS42	MSS Activities	VOC	See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to
			. 50		.03	the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	Vany law emissions that occur offer the year of the transfer o
New/Modified	MSS43	MSS Activities	voc	See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	
Renew only	MSS44	MSS Activities	VOC	See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to the flare. No additional control is proposed.
,		*				the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	Very low emissions that occur after the vessel has been purged to
Renew only	MSS46	MSS Activities	VOC	See Additional Notes:	Yes	the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	This source is being removed from the permit.
Renew only	MSS47	MSS Activities	VOC			Very low emissions that occur after the vessel has been purged to
Renew only	1410041	INIGO Activides	*00	See Additional Notes:	Yes	the flare. No additional control is proposed.

A-ti Dtd	I-m.	le =				1.1100
Action Requested	FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
			MSS	Not required since this is a MSS unit type.	Yes	
Renew only	MSS48	MSS Activities	VOC	See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	
Renew only	MSS49	MSS Activities		See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to
,						the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	Very low emissions that occur after the vessel has been purged to
Renew only	MSS50	MSS Activities	voc	See Additional Notes:	Yes	the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	
Renew only	MSS51	MSS Activities		See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to the flare. No additional control is proposed.
						эт то адамона остионо ргорозод.
			MSS	Net required since this is a MCC unit time	Yes	
Renew only	MSS52	MSS Activities		Not required since this is a MSS unit type. See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to
Iteliew only	WIGGGZ	W33 Activities	VOC	See Additional Notes.	165	the flare. No additional control is proposed.
				Not required since this is a MSS unit type.	Yes	Very low emissions that occur after the vessel has been purged to
Renew only	MSS53	MSS Activities	VOC	See Additional Notes:	Yes	the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	
Renew only	MSS54	MSS Activities		See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to the flare. No additional control is proposed.
						and mand, the additional control is proposed.
			1100	Not assisted along this is a MCC unit to a	V	
Ponow cale	MOSEE	MSS Activities		Not required since this is a MSS unit type.	Yes	Very low emissions that occur after the vessel has been purged to
Renew only	MSS55	MSS Activities	VOC	See Additional Notes:	Yes	the flare. No additional control is proposed.

Form PI-1 General Application

BACT

Company Name: Equistar Chemicals, L.P.

Action Requested	FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
			MSS	Not required since this is a MSS unit type.	Yes	
Renew only	MSS56	MSS Activities	VOC	See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to the flare. No additional control is proposed.
-						the hare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	Very low emissions that occur after the vessel has been purged to
Renew only	MSS57	MSS Activities	voc	See Additional Notes:	Yes	the flare. No additional control is proposed.
			Mee	Not required since this is a MSS unit type.	Yes	
Renew only	MSS58	MSS Activities	VOC	Not required since this is a MSS unit type. See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to
						the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	
Renew only	MSS59	MSS Activities	voc	See Additional Notes:	Yes	Very low emissions that occur after the vessel has been purged to the flare. No additional control is proposed.
Renew only	MSS60	MSS Activities	VOC	Not required since this is a MSS unit type. See Additional Notes:	Yes Yes	Very low emissions that occur after the vessel has been purged to
iteliew only	WI3300	WGG Activities	VOC	See Additional Notes.	165	the flare. No additional control is proposed.
			MSS	Not required since this is a MSS unit type.	Yes	
New/Modified	F-5102	Control: Bag Filter/Baghouse	PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
Now/Modifi-	C E202D	Central Pag Filter/Dh	MSS	Same as normal operation BACT requirements. The emission reduction techniques for PM10 and PM2.5 will follow the technique	Yes	
New/Modified	S-5203D	Control: Bag Filter/Baghouse	PM	for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
			MSS	Same as normal operation BACT requirements.	Yes	
New/Modified	F-6801	Control: Bag Filter/Baghouse	PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. 0.01 gr/dscf. Monitoring will be required.	Yes	
				The state of the s		

Texas Commission on Environmental Quality Form PI-1 General Application Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020 Permit #: 9423

Action Requested FINs Unit Type Current Tier I BACT Confirm Additional Notes Pollutant MSS Same as normal operation BACT requirements.
The emission reduction techniques for PM10 and PM2.5 New/Modified F-4801 Control: Bag Filter/Baghouse РМ for PM, 0.01 ar/dscf. Monitoring will be required Same as normal operation BACT requirements Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, etc. Specify technique. Must meet that control device's approved efficiency. All VOC vents having a concentration of 100 ppmw VOC in propylene ew/Modified D-4105A Process Vent VOC or greater shall be vented to a control device Halogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved efficienc Same as normal operation BACT requirements. Non-halogenated VOCs: flare, any oxidizer, adsorber, absorber/scrubber, et Specify technique. Must meet that control device's approved efficiency All VOC vents having a concentration of 100 ppmw VOC in propylene or greater shall be vented to a control device. v/Modified D-4706 voc alogenated VOC: Thermal oxidation followed by absorber/scrubber carbon adsorption. Specify technique. Must meet that control device's approved effici MSS Same as normal operation BACT requirements Vent from field samplers control is proposed. The emission reduction techniques for PM10 and PM2.5 will follow the technique Emissions from individual sample stations are very low, no additional РМ for PM. See additional notes control is proposed. Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 TK-884 H2SO4 Fixed roof with submerged fill. ame as normal operation BAC1 requirements except as listed belo Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 H2SO4 TK-895 Consolidate See Additional Notes: Fixed roof with submerged fill. ame as normal operation BACT requirements except as listed below Fixed roof tank draining:

VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control device must meet BACT.

Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control device must meet BACT. MSS Yes Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be white or aluminum. TK-5104C

Texas Commission on Environmental Quality Form PI-1 General Application BACT Commission of Environmental Quality

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Action Requested	FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
				Same as normal operation BAC1 requirements except as listed below.		
			MSS	Fixed roof tank draining: VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control device must meet BACT. Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control device must meet BACT.	Yes	
Renew only	D-6850	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	voc	Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be white or aluminum.	Yes	
			MSS	Same as normal operation BAC1 requirements except as listed below. Fixed roof tank draining: VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control device must meet BACT. Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled until there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control device must meet BACT.	Yes	
New/Modified	MSS61	MSS Activities	PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:	Yes	Good housekeeping practices will be utilized to ensure dusting is minimized.
				IOI FW. See Additional Notes.		IIIIIIIIIIZEU.
			MSS	Not required since this is a MSS unit type.		
			WIJJ			
New/Modified	MSS62	MSS Activities	PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:	Yes	Good housekeeping practices will be utilized to ensure dusting is minimized.
			MSS	Not required since this is a MSS unit type. The emission reduction techniques for PM10 and PM2.5 will follow the technique	Yes	Good housekeeping practices will be utilized to ensure dusting is
New/Modified	MSS63	MSS Activities	PM	for PM. See Additional Notes:	Yes	minimized.
			MSS	Not required since this is a MSS unit type.		
New/Modified	MSS64	MSS Activities	PM	The emission reduction techniques for PM10 and PM2.5 will follow the technique	Yes	Good housekeeping practices will be utilized to ensure dusting is
				for PM. See Additional Notes:	. 50	minimized.
			MSS	Not required since this is a MSS unit type.		

Version 4.0 BACT

Texas Commission on Environmental Quality Form PI-1 General Application BACT Commission of Environmental Quality

Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

Action Requested	FINs	Unit Type	Pollutant	Current Tier I BACT	Confirm	Additional Notes
New/Modified	U-FUG	Fugitives: Piping and Equipment Leak	voc	Specify which is applicable: 1. Uncontrolled VOC emissions < 10 tpy: none 2. 10 tpy < uncontrolled VOC emissions < 25 tpy: 28M leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vy < 0.002 psia: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift. Appropriate credit for AVO program.	Yes	Specify which is appricable: 1. Uncontrolled VOC emissions < 10 tpy: none 2. 10 tpy < uncontrolled VOC emissions < 25 tpy: 28M leak detection and repair program. 75% credit for 28M. 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected. For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection brive; nex shift Appropriate, credit for AVO program.
						-
			MSS	Same as normal operation BACT requirements.	Yes	

Version 4.0 BACT

Date: June 2, 2020 Permit #: 9423

FIN	Unit Type	Pollutant	Minimum Monitoring Requirements	Confirm	Additional Notes for Monitoring
FL-3706	Control: Flare	voc	Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.	Yes	
		со	Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.	Yes	
		NOx	Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.	Yes	
		SO2	Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.	Yes	
D-885	Loading: Truck	voc	Observation for connection leaks. Where vapor routed to control: copy of annual vapor tightness certification. Vacuum monitoring for 100% capture, not required for pressure vessel loading. Where specific liquids loaded and the maximum physical pumping rate of the system and maximum throughput for each liquid is specified: throughput of each liquid loaded. Where loading rate is operator controlled and/or specific liquid throughputs are variable: Timing and throughput, record of properties (temperature, vapor pressure and molecular weight) of each liquid loaded. Temperature of liquid loaded not required where liquids loaded from unheated tanks which receive liquids at or below ambient temperatures. Note: Records updated monthly, including 12 month rolling data.	Yes	
PP-ANALYZER	Analyzer sample system	VOC CO NOx	See additional notes: See additional notes: See additional notes:	Yes Yes Yes	Very low emissions; no monitoring is proposed. Very low emissions; no monitoring is proposed. Very low emissions; no monitoring is proposed.
CT-895	Cooling Tower	voc	VOC concentration in the cooling water by TCEQ stripping method or approved equivalent monthly. Cooling water circulation rate measured hourly unless maximum circulation rate assumed.	Yes	
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Cooling water circulation rate measured hourly unless maximum circulation rate assumed. Large (>50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water daily then reduced to weekly and quarterly with daily conductivity measurement that is correlated. Small (<50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water measured weekly.		

Date: June 2, 2020 Permit #: 9423

CT-6901	Cooling Tower	voc	VOC concentration in the cooling water by TCEQ stripping method or approved equivalent monthly. Cooling water circulation rate measured hourly unless maximum circulation rate assumed.	Yes	
			The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Cooling water circulation rate measured hourly unless maximum circulation rate assumed.		
		РМ	Large (>50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water daily then reduced to weekly and quarterly with daily conductivity measurement that is correlated.	Yes	
			Small (<50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water measured weekly.		
CT-891	Cooling Tower	VOC	VOC concentration in the cooling water by TCEQ stripping method or approved equivalent monthly. Cooling water circulation rate measured hourly unless maximum circulation rate assumed.	Yes	
			The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Cooling water circulation rate measured hourly unless maximum circulation rate assumed.		
		PM	Large (>50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water daily then reduced to weekly and quarterly with daily conductivity measurement that is correlated.	Yes	
			Small (<50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water measured weekly.		
			The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Cooling water circulation rate measured hourly unless maximum circulation rate assumed.		
CT-4861	Cooling Tower	РМ	Large (>50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water daily then reduced to weekly and quarterly with daily conductivity measurement that is correlated.	Yes	
			Small (<50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water measured weekly.		
D-3106	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-3106B	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	

Date: June 2, 2020 Permit #: 9423

D-3504	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Production rate or flow and differential pressure across PM control devices	Yes	
D-3103	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-3105	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-3107	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-3107	1 100ess Vent	V00	Monitoring consistent with Control Device	163	
			Production rate or flow as appropriate		
D-3110A	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-3113	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
			Production rate or flow as appropriate		
T-3111	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	

Date: June 2, 2020 Permit #: 9423

			Monitoring		Joinpany Name. Equistar Orienticals, E
C-FUG	Fugitives: Piping and Equipment Leak	voc	Use EPA Method 21 to monitor for leaks from seals on pumps, compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action taken.	Yes	
TK-2527A	Storage Tank (1): Fixed roof with capacity < 25,000 gal or	voc	Stored material and throughput	Yes	
	TVP < 0.50 psia				
TK-2527B	Storage Tank (1): Fixed roof with capacity < 25,000 gal or	VOC	Stored material and throughput	Yes	
110-23275	TVP < 0.50 psia	V00	Stored material and unoughput	163	
TK-880	Storage Tank (1): Fixed roof with capacity < 25,000 gal or	VOC	Stored material and throughput	Yes	
	TVP < 0.50 psia				
D 4100	Dragge V	V00	Production rate or flow as appropriate	Vac	
D-4106	Process Vent	VOC	Monitoring consistent with Control Device	Yes	
D-4504	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	

Date: June 2, 2020 Permit #: 9423

		PM	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Production rate or flow	Yes	
			and differential pressure across PM control devices		
D-FUG	Fugitives: Piping and Equipment Leak	voc	Use EPA Method 21 to monitor for leaks from seals on pumps, compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action taken.	Yes	
D-4105	Process Vent		Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-4107	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-4110A	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-4110B	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	

Date: June 2, 2020 Permit #: 9423

T-4111	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-4103	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-6106A	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-6106B	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-6504	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
		DM	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Production rate or flow and differential pressure across PM control devices	Yes	
D-6103	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
			Monitoring consistent with Control Device		
D-6105	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	

Date: June 2, 2020 Permit #: 9423

			momoring		
D-6105B	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
D-0103B	1 100ess vent	VOC	Monitoring consistent with Control Device	163	
D 6107	Dragge Vant	VOC	Production rate or flow as appropriate	Voc	
D-6107	Process Vent	VOC	Monitoring consistent with Control Device	Yes	
D-6110A	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
			mornioning contraction man contract posterior		
D-6110B	Process Vent	voc	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
			Monitoring consistent with Control Device		
T-6111	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
	1 100033 VEIIL		Monitoring consistent with Control Device	163	
			Production rate or flow as appropriate		
D-6113	Process Vent	VOC	Monitoring consistent with Control Device	Yes	

Date: June 2, 2020 Permit #: 9423

			Use EPA Method 21 to monitor for leaks from seals on pumps, compressors, agitator and valve seals on piping components in light		
E-FUG	Fugitives: Piping and Equipment Leak	voc	idiquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or offactory	Yes	
			(AVO) senses to observe leaks. Record results and corrective action taken.		
M-2573	Control: Bag Filter/Baghouse	voc	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
M-2574	Control: Bag Filter/Baghouse	VOC	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	Quarterly visible emissions observations
M-42591	Control: Bag Filter/Baghouse	voc	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
F-583	Control: Bag Filter/Baghouse	VOC	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
S-2580	Control: Bag Filter/Baghouse	VOC	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	

Date: June 2, 2020 Permit #: 9423

	_				
D-4801-03	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	VOC is part of E-CAP. See below for more information.
F 4040	Control: Bag	V00	O ALES IN A	· ·	VOC
F-4842	Filter/Baghouse	voc	See Additional Notes: The emission monitoring techniques for PM10 and PM2.5 will follow	Yes	VOC is part of E-CAP. See below for more information.
		PM	the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
F-5101	Control: Bag Filter/Baghouse	voc	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust	Yes	
			collectors. Quarterly visible emissions observations.		
F-6802	Control: Bag	voc	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
1 0002	Filter/Baghouse		The emission monitoring techniques for PM10 and PM2.5 will follow		Voc is part of 2 of a . occ below for more information.
		PM	the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
	Control: Bag				
F-5303	Filter/Baghouse	voc	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
			consectors. Quarterly visible ethissions suservations.		
F-6841-42	Control: Bag Filter/Baghouse	voc	See Additional Notes:	Yes	VOC is part of E-CAP. See below for more information.
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

1		l		l	
E-CAP	Cap on VOC emissions	voc	See additional notes:	Yes	Periodic sampling of the headspace in the product sample is conducted.
			Daily Flow into treatment plant.		
			Quarterly AVO check of water seal where site wastewater emissions >5tpy		
PP-WWTR	Wastewater Facilities	VOC	For Activated Sludge Biological Treatment, daily mixed liquor	Yes	
			suspended solids (MLSS) Monthly wastewater concentration of all air contaminants entering		
			treatment plant.		
			Requirement dependent on application representation. Vapor		
			concentration measurement prior to opening to atmosphere may be		
MSS41	MSS Activities	VOC	required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored.	Yes	
MOOTI	Wee Activities		Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for	103	
			purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated.		
			·		
			Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be		
			required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored.		
MSS42	MSS Activities	VOC	Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for	Yes	
			purge, monitoring consistent with device used and flow and firing trates monitored or potential calculated		
			rates monitored of colemnal calculated.		
			Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be		
110010	1100 A 11 111	1/00	required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored.		
MSS43	MSS Activities	VOC	Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for	Yes	
			without cap, blind hange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated		
			Lares on minoren di dollemat calculated		
			Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be		
			required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored.		
MSS44	MSS Activities	VOC	Must monitor open ended lines for leaks if open more than 72 hours	Yes	
			without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing		
			rates monitored or potential calculated		

Date: June 2, 2020 Permit #: 9423

			Requirement dependent on application representation. Vapor		
MSS46	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated	Yes	
MSS47	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or colential calculated.	Yes	
MSS48	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated	Yes	
MSS49	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated.	Yes	
MSS50	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing cates monitored or potential calculated.	Yes	

Date: June 2, 2020 Permit #: 9423

MSS51	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated	Yes	
MSS52	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated	Yes	
MSS53	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated.	Yes	
MSS54	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated	Yes	
MSS54	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing	Yes	
MSS54	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing	Yes	
MSS54	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing	Yes	
MSS54	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing	Yes	
MSS54	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing	Yes	
MSS54	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing	Yes	
MSS54	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated	Yes	
MSS54	MSS Activities MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing	Yes	
			concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing		
			concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing		
			concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing		
			concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing		
			concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing		
			concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing		

Date: June 2, 2020 Permit #: 9423

MSS56	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours	Yes	
			without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing		
			rates monitored or potential calculated.		
MSS57	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated.	Yes	
			Requirement dependent on application representation. Vapor		
MSS58	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated	Yes	
			Requirement dependent on application representation. Vapor		
MSS59	MSS Activities	voc	concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for purge, monitoring consistent with device used and flow and firing rates monitored or notential calculated	Yes	
MSS60	MSS Activities	voc	Requirement dependent on application representation. Vapor concentration measurement prior to opening to atmosphere may be required and/or emission potential may be recalculated. Each measurement and/or number of events monthly must be monitored. Must monitor open ended lines for leaks if open more than 72 hours without cap, blind flange or plug. Where add on control is used for	Yes	
			purge, monitoring consistent with device used and flow and firing rates monitored or potential calculated.		
			race manitored or potential calculated.		
F-5102	Control: Bag Filter/Baghouse	РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

S-5203D	Control: Bag Filter/Baghouse	РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
	Control: Bag		The emission monitoring techniques for PM10 and PM2.5 will follow		
F-6801	Filter/Baghouse	PM	the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
	-		collectors: Quarterly visible emissions observations.		
	Control: Bag		The emission monitoring techniques for PM10 and PM2.5 will follow		
F-4801	Filter/Baghouse	PM	the technique for PM. Pressure drop monitoring of the dust collectors. Quarterly visible emissions observations.	Yes	
			collectors. Quarterly visible emissions observations.		
D-4105A	Process Vent	VOC	Production rate or flow as appropriate Monitoring consistent with Control Device	Yes	
			The little was a second of the little was a seco		
D-4706	Process Vent	voc	Production rate or flow as appropriate	Yes	
			Monitoring consistent with Control Device		
PP-SAMPL	Vent from field samplers	voc	See additional notes:	Yes	Emissions are low; no monitoring is proposed.
		РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. See additional notes:		Emissions are low; no monitoring is proposed.

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia TK-884 See Additional Notes: Yes Stored material and throughput Storage Tank (1): Fixed roof with capacity < 25,000 gal or H2SO4 TK-895 Yes Stored material and throughput See Additional Notes: TVP < 0.50 psia Storage Tank (1): Fixed roof with capacity < 25,000 gal or VOC TK-5104C Stored material and throughput TVP < 0.50 psia Storage Tank (1): Fixed roof with capacity < 25,000 gal or VOC D-6850 Stored material and throughput Yes TVP < 0.50 psia The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Blasting material and usage. MSS61 MSS Activities РМ Paint spray type and usage. Combustion firing rates. Differential pressure across PM control devices. The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Blasting material and usage. MSS62 MSS Activities Paint spray type and usage. Yes Combustion firing rates.
Differential pressure across PM control devices. The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Blasting material and usage. MSS63 MSS Activities РМ Paint spray type and usage. Yes Combustion firing rates.
Differential pressure across PM control devices.

ty Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

MSS64	MSS Activities	РМ	The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Blasting material and usage. Paint spray type and usage. Combustion firing rates. Differential pressure across PM control devices.	Yes	
	_				
U-FUG	Fugitives: Piping and Equipment Leak	voc	Use EPA Method 21 to monitor for leaks from seals on pumps, compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action taken.	Yes	
U-FUG		Voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		Voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		Voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		VOC	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		Voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		
U-FUG		voc	compressors, agitator and valve seals on piping components in light liquid and gas VOC service quarterly. Gas or hydraulic check new and a replaced connectors prior to returning to service, or monitor with Method 21 within 15 days of returning to service. Leak detection and repair (LDAR) Program 28M has a leak definition where repair action is required at 10,000 ppmv. LDAR Program 28 VHP has a leak definition where repair action is required at 500 ppmv for valves and connectors and 2000 ppmv for pumps, compressors and agitators. Check connectors weekly using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action		

Version 4.0 Monitoring

Texas Commission on Environmental Quality Form PI-1 General Application Materials Commission of Environmental Quality

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Item	How submitted	Date submitted
A. Administrative Information		•
Form PI-1 General Application	STEERS	06/01/2020
Hard copy of the General sheet with original (ink) signature	Mail	06/01/2020
Professional Engineer Seal	Not applicable	
B. General Information		
Copy of current permit (both Special Conditions and MAERT)		
Core Data Form		
Area map	STEERS	06/01/2020
Plot plan	STEERS	06/01/2020
Process description	STEERS	06/01/2020
Process flow diagram	STEERS	06/01/2020
List of MSS activities	STEERS	06/01/2020
State regulatory requirements discussion	STEERS	06/01/2020
C. Federal Applicability		•
Summary and project emission increase determination - Tables 1F and 2F	STEERS	06/01/2020
Netting analysis (if required) - Tables 3F and 4F as needed		
D. Technical Information		
BACT discussion, if additional details are attached	STEERS	06/01/2020
Monitoring information, if additional details are attached	STEERS	06/01/2020
Material Balance (if applicable)	STEERS	06/01/2020
Calculations	STEERS	06/01/2020
E. Impacts Analysis		
Qualitative impacts analysis	STEERS	06/01/2020
MERA analysis	STEERS	06/01/2020
Electronic Modeling Evaluation Workbook: SCREEN3	STEERS	06/01/2020
Electronic Modeling Evaluation Workbook: NonSCREEN3	STEERS	06/01/2020
PSD modeling protocol	STEERS	06/01/2020
F. Additional Attachments		
NSR Permit 9423 Renewal and Amendment Application	STEERS	06/01/2020
Cover Letter	STEERS	06/01/2020

Version 4.0 Materials

Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

Where to Submit this Application

This worksheet is for informational purposes only. No data is required and you do not need to print this sheet. This worksheet provides guidance on where to send copies of the application materials.

Instructions:

- 1. Submit application materials as indicated below.
- 2. Retain a copy for your records.
- 3. Indicate to whom copies have been sent on the cover letter of any subsequent correspondence.
- 4. Indicate the assigned permit number(s), RN, CN, and permit reviewer, if known, on all subsequent correspondence.

Note:

1. If submitting through STEERS, the appication materials do not need to be submitted to APD, the TCEQ regional office, or the appropriate local program.

Click here to return to Cover Sheet.

Who	Where	When	What
Air Permits Division Air Permits Initial Review Team (APIRT)	Email the workbook to apirt@tceq.texas.gov following the instructions on the Cover sheet. Regular, Certified, Priority Mail MC 161, P.O. Box 13087, Austin, Texas 78711-3087 or Hand Delivery, Overnight Mail Mail Code 161, 12100 Park 35 Circle, Building C, Third Floor, Room 300W, Austin, Texas 78753	All applications, unless submitting through STEERS	Hard copy of the General sheet if original signature is required, electronic full workbook, original Core Data Form if applicable, and electronic (preferred) application attachments
Financial Administrative Division Revenue Operations Section	Regular, Certified, Priority Mail MC 214, P.O. Box 13088, Austin, Texas 78711-3088 or Hand Delivery, Overnight Mail Mail Code 214, 12100 Park 35 Circle, Building A, Third Floor, Austin, Texas 78753 Note: The official application cannot be faxed	All applications not using ePay	Fee, copy of the "General" sheet of this workbook, copy of the Core Data Form
Region 12	5425 Polk St., Ste. H, Houston, TX 77023-1452	All applications, unless submitting through STEERS	Copies of the workbook, Core Data Form, and all attachments
Local Air Pollution Control Program(s)	To find your local air pollution control programs go to the link below.	All applications in an area having jurisdiction, unless submitting through STEERS	Copies of the workbook, Core Data Form, and all attachments

Version 4.0 Copies

Date: June 2, 2020 Permit #: 9423

· · · · · · · · · · · · · · · · · · ·	
Copies	Company Name: Equistar Chemicals, L.P.

Who	Where	When	What
Alabama-Coushatta Tribe	571 State Park Road 56,	If the proposed facilities	Copies of the
of Texas	Livingston, Texas 77351	are located within 100	workbook, all
		km or less of the Indian	attachments, public
		Tribal Lands	notice, and affidavit
Kickapoo Traditional	Box HC 1, 9700,	If the proposed facilities	Copies of the
Tribe of Texas	Eagle Pass, Texas 78852	are located within 100	· ·
		km or less of the Indian	, ,
		Tribal Lands	notice, and affidavit
Ysleta del Sur Pueblo of	119 S. Old Pueblo Rd.,	If the proposed facilities	Copies of the
Texas	El Paso, Texas 79907	are located within 100	workbook, all
		km or less of the Indian	attachments, public
		Tribal Lands	notice, and affidavit
EMD Division Chief	4171 N. Mesa, Suite C-100,	If new construction is	Copies of the
International Boundary	El Paso, Texas 79902-1441	proposed within 100	workbook and all
and Water Commission		km of the Rio Grande	attachments
United States Section		River	

Version 4.0 Copies

Date:	
Permit #:	
Company:	

Sheet: General		
Term:	Description:	
Amendment	Permit amendments are for modifications to existing permitted facilities that result in a change in method of control, a change in character of emissions, or an increase in emission rate of any air contaminant as noted in 30 TAC Chapter \$116.116(b).	
Area Name	You must indicate the general type of operation, process, equipment or facility. Include numerical designations, if appropriate. Examples are Sulfuric Acid Plant and No. 5 Steam Boiler. Vague names such as Chemical Plant are not acceptable.	
Change of Location	The process of gaining approval and moving a permitted facility and associated sources to a new location in which public notice is required, in accordance with the requirements of Chapter 39 of this title (relating to Public Notice). For more information, see 30 TAC Chapter \$116.178	
Company Official Contact	Provide the name, title, mailing address, telephone number, fax number, and e-mail address of the company official contact. The company official must not be a consultant. Please ensure that the e-mail address provided for the company official is the most appropriate to receive time-sensitive correspondence from the TCFO.	
Company or Legal Name	Permits are issued to either the facility owner or operator, commonly referred to as the applicant or permit holder. List the legal name of the company, corporation, partnership, or person who is applying for the permit. We will verify the legal name with the Texas Secretary of State.	
Customer Reference Number (CN)	The CN is a unique number given to each business, governmental body, association, individual, or other entity that owns, operates, is responsible for, or is affiliated with a regulated entity. We assign the CN when a Core Data Form is initially submitted to the Central Registry.	
Federal Operating Permit	A Federal Operating Permit (FOP) is a legally enforceable document that the TCEQ issues to certain air pollution sources. The 1990 FCAA Amendment includes requirements for states to implement a FOP program. The EPA promulgated these requirements in 40 CFR Part 70 Exit the TCEQ. The TCEQ met these Federal requirements and provided a road map in 30 TAC Chapter 122 to implement the FOP program in Texas. The EPA has delegated the implementation of the FOP program to the TCEQ and continues to maintain exercisist of the program.	
Flexible Permit	A flexible permit allows an owner/operator more flexibility in managing the operations by staying under an overall emissions cap or individual emission limitation. The owner/operator is allowed to structure the flexible permit to best serve their needs. Flexible permits follow the same permitting requirements discussed above for NSR permits.	
Greenhouse Gases	GHGs are the aggregate group of six greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6).	
Hazardous Air Pollutant Major Source Permit (FCAA §112g)	112(g) of the FCAA was designed to ensure that emissions of toxic air pollutants (HAPs) do not increase if a facility is constructed or reconstructed before EPA issues a MACT or air toxics regulation for that particular category of sources or facilities. Section 112(g) reviews also apply for MACT standards which have been vacated by the courts and that have not been reestablished by EPA	
Incorporated by Consolidation	Incorporation by consolidation of PBRs, SPs, and/or SEs is typically voluntary. Units that are consolidated will undergo BACT and impacts review which must be included in the application submittal. When incorporated into the permit, the original authorization is no longer active.	
Incorporated by Reference	Incorporation by reference of certain PBRs, SPs, and/or SEs is mandatory. All PBRs, SPs, and SEs that directly affect the emissions of permitted facilities must, at a minimum, be referenced when a NSR permit is amended or renewed. If these authorizations occur at the permitted site but do not directly affect permitted facilities, it is not required, but at the request of the permit holder they may be referenced. Referencing will not require a best available control technology (BACT) review but may require an impacts review based on	

Date:	
Permit #:	
Company:	

Latitude	Latitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address
Lautude	or the destination point of the driving directions. Latitude is the angular distance of a
	location north of the equator and will always be between 25 and 37 degrees north (N) in
	Texas
Longitude	Longitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address
	or the destination point of the driving directions. Longitude is the angular distance of a
	location west of the prime meridian and will always be between 93 and 107 degrees west
	(W) in Texas.
Major Modification	A major modification is an increase in net emissions that equals or exceeds the Significant
major mounious.	Emission Rate (SER) for that pollutant and location.
Major Source	A major source is a named or un-named source with emissions greater than or equal to
major coarso	major source amounts.
Minor Construction Permit	New Source Review (NSR) permit application (30 TAC Chapter 116) that does not require
	major NSR permitting.
Nonattainment Permit	If the facility is located in a nonattainment area, designated by the U.S. Environmental
	Protection Agency, additional permitting requirements may apply. Nonattainment permit
	review is required if the facility has emissions above the major source threshold for the
	specific county designated as nonattainment. Nonattainment permitting requires the
	installation of lowest achievable emission rate control technology and the acquisition of
	emission reductions to offset the proposed emissions increases
Permit Number(s) (if existing)	If the application is for an existing permitted facility, list the current permit number. Please
() ()	confirm that the permit number is accurate before submitting your application. If this
	application is for a new facility, leave blank.
Permit Renewal Application	It is possible to process a renewal application at the same time as an amendment for
• •	preconstruction permits under THSC §382.055. A renewal application may accompany a
	permit amendment application if the permit is within three years of its expiration date and if
	the permit amendment is subject to public notice requirements. The TCEQ shall provide
	written notice to the holder of a permit that the permit is scheduled for review
Permits by Rule (PBR)	The general requirements and specific PBRs are found in 30 TAC Chapter 106. Note that
	the facility must meet all the established PBR requirements to claim a PBR.
Plant-wide Applicability Limit	Permit applicants and holders are allowed the option of establishing a plant wide
	applicability limit (PAL) for all facilities at a site or a stand-alone process. The PAL would
	initially be based on actual emissions with a best available control technology (BACT)
	based limit phased in over an implementation period
Portable Facility	A facility authorized by a permit containing special conditions that allow the facility to
	relocate. Portable facilities are authorized by the TCEQ, Air Permits Division. To be a
	portable facility, the facility shall not exceed the major source thresholds stated in 40 CFR
	§ 51.166(b)(1) and the permit for that facility is designated with a portable permit number,
	portable registration number, or portable account number. The portable facility cannot be
	located at an account that is subject to the requirements for PSD and Nonattainment
	permits under 30 TAC Chapter 116, Subchapter B
Principal Company	Briefly describe the business conducted at this Regulated Entity.
Product/Business	
Principal NAICS and SIC Codes	All Regulated Entities should have North American Industrial Classification System
	(NAICS) or Standard Industrial Classification (SIC) and codes. A Primary NAICS or SIC
	code is the code that best describes the business conducted at this Regulated Entity.
Prevention of Significant	If the facility is a major stationary source (or construction is a major modification) located in
Deterioration (PSD) Permit	an attainment or unclassifiable area, a PSD permit will be required. PSD review will require
	additional modeling to determine if the new emissions will have an impact on the
	surrounding air quality which could affect compliance with the National Ambient Air Quality
D 11 15 " 11 1 21"	Standards
Regulated Entity Number (RN)	The RN is a unique agency assigned number given to each person, organization, place, or
	thing that is of environmental interest to us and where regulated activities will occur. The
	RN is assigned when a Core Data Form is initially submitted to the Central Registry, if the
	agency has conducted an investigation, or if the agency has issued an enforcement
	action. The RN replaces existing air account numbers. The RN for portable units is
	assigned to the unit itself, and that same RN should be used when applying for
	authorization at a different location

Date:	
Permit #:	
Company:	

Relocation	The appropriate regional office may approve the relocation of a portable facility if the applicant's permit contains current special conditions defining the approval process to move. A relocation application cannot include a modification. No public notice is required for a relocation. A permit holder may request from the Air Permits Division a permit alteration, as defined in 30 TAC §116.116(c)(1)(B) (relating to Changes to Facilities) to update or add relocation instructions. The permit holder may apply for a relocation
Site Location Description:	If there is no street address, provide written driving directions to the site. Identify the location by distance and direction from well-known landmarks such as major highway intersections.
Standard Exemptions	Many standard exemptions were codified into 30 Texas Administrative Code Chapter 106 as permits by rule. There are some sites that made a claim prior to this and continue to be authorized by the standard exemption.
Standard Permits	Standard permits are authorized under 30 TAC Chapter 116, Subchapter F. Owners/operators with facilities that meet the established standard permit criteria may qualify for a standard permit.
Start of Construction and Operation	You must obtain an air authorization before beginning construction. Construction is broadly interpreted as anything other than site clearance or site preparation. Activities such as land clearing, soil load-bearing tests, leveling of the area, sewers and utility lines, road building, power line installation, fencing, and construction shack building are considered site clearance or preparation. Equipment may be received at a plant site and stored, provided no attempt is made to assemble the equipment or connect it to any electrical, plumbing, or other utility system. All work, such as excavation, form erection, or foundations upon which facilities will rect in considered construction.
Technical Contact	Provide the name, title, company, mailing address, telephone number, fax number, and email address of the person we should contact for technical questions. This person must have the authority to make binding agreements and representations on behalf of the applicant. This technical contact may be a consultant.
Texas Secretary of State Charter/Registration Number (if given)	Permits are issued to either the facility owner or operator, commonly referred to as the applicant or permit holder. List the legal name of the company, corporation, partnership, or person who is applying for the permit. We will verify the legal name with the Texas Secretary of State.

Sheet: Fees		
Term:	Description:	
Capital Cost	Capital costs are fixed, one-time expenses incurred on the purchase of land, buildings, construction, and equipment used in the production of goods or in the rendering of services.	
Fee Exemption/Reduction	If your facility qualifies for a fee exemption, discount, or a reduction in fees, give a description of how the facility qualifies and what the actual fees will be.	
GHG/PSD/Nonattainment Application	If the permit includes a greenhouse gas (GHG), prevention of significant deterioration (PSD), or Nonattainment permit application a different fee structure will apply. Note that these fees are not in addition to the regular permit application fee. Note: A single PSD fee (calculated on the capital cost of the project per 30 TAC § 116.163) will be required for all of the associated permitting actions for a GHG PSD project. Other NSR permit fees related to the project that have already been remitted to the TCEQ can be subtracted when determining the appropriate fee to submit with the GHG PSD application; please identify these other fees in the GHG PSD permit application.	
Regular Permit	A New Source Review (NSR) minor construction permit application will typically fall into the "Permit Application Fee" structure.	

	Sheet: Unit Types	- Emission Rates
Heading:	Description:	

Date:	
Permit #:	
Company:	

Permit Primary Industry The permit primary industry falls into one of four categories: Chemosterial / Energy, Coatings, Combustion, and Mechanical / Agricultural / Construction. One of these industry groups must be chosen for the spreadsheet to function correctly. If you are unsure about which industry group your facility belongs in, see the "Unit Typees" sheet for examples of unit breas that can be chosen. For each Emission Point Number (EPN), differentiate what action is occurring with this project. NewModified, Not NewModified, Remove (if the source is being removed from the facility), and Consolidate (I) permits by rule, standard permits, and/or standard examinations are heint incomorated the cansolidation). Include these emissions in summary? Facility ID Number (FIN) Associate the EPN to the appropriate facility with a facility identification number (FIN). Associate the EPN to the appropriate facility with a facility identification number (FIN). These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the FEN Albhraviations are accorable (EPN) in numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Albhraviations are accorable in the same as the EPN. Albhraviations are accorable in the same as the EPN. Albhraviations are accorable in the same as the EPN. Albhraviations are accorable in the source name. Follutant Evamples of emission point with a unique number for this plant site. The emission point numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Albhraviations are accorable in the same as the EPN. Albhraviations are accorable in the same as the EPN. Albhraviations are accorable in the same as the EPN. Albhraviations are accorable in the source name. For it is each component or air contaminant name. Examples of the source is a plant and the source name. It is each component or air contaminant name. Examples		
must be chosen for the spreadsheet to function correctly. If you are unsure about which industry group your facility belongs in, see the "Unit Types" sheet for examples of unit turned that can he chosen. For each Emission Point Number (EPN), differentiate what action is occurring with this project. New/Modified, Not New/Modified, Remove (if the source is being removed from the facility), and Consolidate (if permits by rule, standard permits, and/or standard exemptions are heiron incomparated he consolidation). Include these emissions in summary? Indicate if the emissions represented in the selected row should be included in the summary table. Typically, this will be yes. Some examples of when to select no are if the emissions are part of a cap listed separately or if you are including the worst case emissions or full title lone nearating scenarios. Facility ID Number (FIN) Associate the EPN to the appropriate facility with a facility identification number (FIN). These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1," If appropriate, a FIN can be the same as the EPN. Abhavalations are accentable. Examples of emission point with a unique number for this plant site. The emission point number (EPN) must be consistent with the emission point identification used on the plot plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1," "If appropriate, a FIN can be the same as the EPN. Abhavalations are accentable. Examples of emission point names are; "heater," "vent," "boiler," "tank," "reactor," "separator," "saghouse," or "fugitive." See the MAERT Example for further examples of the source name. List each component or air contaminant name. Examples of component names are; "FOO," "FOO," "SOO," "FOO," "SOO," "FOO," "SOO," "PM2," "PM2,5," "NOX," "CO," "SOO," "PM3," "PM40," "PM40," "PM40," "PM40," "PM	Permit Primary Industry	The permit primary industry falls into one of four categories: Chemical / Energy, Coatings, Combustion, and Mechanical / Agricultural / Construction. One of these industry groups
industry group your facility belongs in, see the "Unit Types" sheet for examples of unit broses. Institution of the facility of the source NewModified, Not NewModified, Not NewModified, Not NewModified, Not NewModified, Remove (if the source is being removed from the facility), and Consolidate (if permits by rule, standard permits, and/or standard exampling and indicate if the emissions represented in the selected row should be included in the summary? Include these emissions in summary? Include these emissions in indicate if the emissions represented in the selected row should be included in the summary table. Typically, this will be yes. Some examples of when to select no are if the emissions are part of a cap listed separately or if you are including the worst case emissions of multiple operation scenarios. Facility ID Number (FIN) Associate the EPN to the appropriate facility with a facility identification number (FIN). These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "10081," "BH1." If appropriate, a FIN can be the same as the EPN. Abbreviations are acceptable. Identify each emission point with a unique number for this plant site. The emission point lentification used on the plot plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers are, "BOILER1," "10081," "BH1." If appropriate, a FIN can be the same as the EPN. Abbreviations are acceptable. Note: Separately of Characters. Examples of PN and/or FIN numbers are, "Separatery." "Indepose," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant Examples of emission point names are; "heater," "well," "boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example of Certain common pollutants must be listed as follows: "VCC," "PM"," "PN10," "PN10," "NCC," ""CO," ""SCQ", ""Experm 5 dovines," "Amaximum emission rate for each pollutant in terms of pounds per hour. Punds per hour is the maximum short-term e		
Is this source New/Modified, Not New/Modified, to be removed, or to be consolidated? Include these emissions in summary? Include these emissions in summary table. Typically, this will be yes. Some examples of when to select no are if the emissions are part of a cap listed separately or if you are including the worst case emissions are part of a cap listed separately or if you are including the worst case emissions are part of the the emission sensions. Associate the EPN to the appropriate facility with a facility identification number (FIN). These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "10081," "BH1." If appropriate, a FiN can be the same as the FEN Abhreviations are accentable. Identify each emission point with a unique number for this plant site. The emission point of plan, any previous permits, and "Emission inventory Questionnaire." These numbers (EPN) must be consistent with the emission point intentification used on the plot plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers are, "BOILER1," "10081," "BH1." If appropriate, a FIN can be the same as the EPN. Abhraviations are accentable. Examples of emissions opoint names are; "heater," "vent," 'boiler," "tank," "reactor," "separator," "baghouse," or "fugitive," "See the MAERT Example for further examples of the source name. List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "suffur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5, "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total finglicable, enter the current emission rate for each pollutant in te		industry group your facility belongs in, see the "Unit Types" sheet for examples of unit
the facility, and Consolidate (if permits by rule, standard permits, and/or standard exemptions are hein incomporated by consolidation) Include these emissions in surmary? Include these emissions in surmary table. Typically, this will be yes. Some examples of when to select no are if the emissions are part of a cap listed separately or if you are including the worst case emissions of multiple nonerating scenarios. Associate the EPN to the appropriate facility with a facility identification number (FIN). These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "10081," "BH1." If appropriate, a FIN can be the same as the EPN. Abbreviations are acceptable. Identify each emission point with a unique number for this plant site. The emission point plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "10081," "BH1." If appropriate, a FIN can be the same as the EPN. Abbreviations are acceptable. Source Name Source Name Examples of emission point names are, "heater," "vent," "boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. List each component or air contaminant name. Examples of component names are, "ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H25," "H2504," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total including a pink criteria and lutants. Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emiss	Is this source New/Modified, Not	For each Emission Point Number (EPN), differentiate what action is occurring with this
exemptions are heing incomporated by consolidation)	New/Modified, to be removed, or	project: New/Modified, Not New/Modified, Remove (if the source is being removed from
summary? summary table. Typically, this will be yes. Some examples of when to select no are if the emissions are part of a cap listed separately or if you are including the worst case emissions of multiple operations. Associate the EPN to the appropriate facility with a facility identification number (FIN). These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Abhreviations are accentable Identify each emission point with a unique number for this plant site. The emission point numbers (EPN) must be consistent with the emission point identification used on the plot nany previous permits, and "Emissions inventory Questonnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Abhreviations are accentable. Examples of emission point names are; "heater," "vent," boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "suffur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PW," "PM10," "PM2.5," "NOx," "CO," "SC2," "PB," "TEQ5," "TRS." "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total /includina diabit critaria nalultafatet. Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Short-Term (tb/hr) Consolidated Long-Term (tpy) If applicable, enter the current emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit,	to be consolidated?	
emissions are part of a cap listed separately or if you are including the worst case emissions of multiple consertains scenarios. Facility ID Number (FIN) Associate the EPN to the appropriate facility with a facility identification number (FIN). These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "10081," "BH1." If appropriate, a FIN can be the same as the FPN Abhreviations are accentable. Identify each emission point with a unique number for this plant site. The emission point plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "10081," "BH1." If appropriate, a FIN can be the same as the EPN. Source Name Source Name Examples of emission point names are; "heater," "vent," 'boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2." "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5." "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including alpita critaria and lutabata). If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Short-Term (Ib/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard Permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy)	Include these emissions in	Indicate if the emissions represented in the selected row should be included in the
Associate the EPN to the appropriate facility with a facility identification number (FIN). These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the FPN. Abhreviations are accentable identify each emission point with a unique number for this plant site. The emission point numbers (EPN) must be consistent with the emission point identification used on the plot plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Abhraviations are accentable. Bource Name Examples of emission point names are; "heater," "vent," "boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "suffur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total Jincluting aight criteria pollutants." Current Long-Term (lb/hr) Gurrent Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum emission rate expected to occur in any one-hour period. Enter the currently authorized emission rat	summary?	emissions are part of a cap listed separately or if you are including the worst case
These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN Abhreviations are accentable Identify each emission point with a unique number for this plant site. The emission point numbers (EPN) must be consistent with the emission point identification used on the plot plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Source Name Source Name Examples of emissions point names are; "heater," "vent," 'boiler," "tank," "reactor," "separator," "baghouse," or "fugitive," See the MAERT Example for further examples of the source name. List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "suffur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM1," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pp," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including aight critaria pollutants) Current Short-Term (lb/hr) Garpolita aight critaria pollutants. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility. taking the process operating schedule into account. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule	Facility ID Number (FIN)	
Identify each emission point with a unique number for this plant site. The emission point numbers (EPN) must be consistent with the emission point identification used on the plot plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Abbreviations are accordable Examples of emission point names are; "heater," "vent," 'boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name.	r domy 15 redinisor (Fire)	These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN
Emission Point Number (EPN) numbers (EPN) must be consistent with the emission point identification used on the plot plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Abhraviations are acceptable. Source Name Examples of emission point names are; "heater," "vent," 'boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "sulfur," 'chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents," A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including aicht criteria nollutants). If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour beriod. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility. taking the process operating schedule into account. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emission expected by the facility, taking the process operating schedule into account. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard Permit, standard exemption, or other NSR pe		same as the FPN. Abbreviations are acceptable
plan, any previous permits, and "Emissions Inventory Questionnaire." These numbers can be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Abhraviations are accentable. Examples of emission point names are; "heater," "vent," 'boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (Including aight criteria pollutants). Current Short-Term (Ib/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Consolidated Short-Term (Ib/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (Ib/hr) Enter the proposed emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in te	` ,	· · · · · · · · · · · · · · · · · · ·
be alphanumeric and maximum of 10 characters. Examples of EPN and/or FIN numbers are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Abhraviations are accentable Examples of emission point names are; "heater," "vent," "boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3," Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including aight critaria pollutants) Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking t	Emission Point Number (EPN)	· · · · · · · · · · · · · · · · · · ·
are, "BOILER1," "100B1," "BH1." If appropriate, a FIN can be the same as the EPN. Abbreviations are accentable. Examples of emission point names are; "heater," "vent," "boiler," "tank," "reactor,"		
Source Name Examples of emission point names are; "heater," "vent," 'boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including aight critical pollutants) Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		·
Source Name Examples of emission point names are; "heater," "vent," 'boiler," "tank," "reactor," "separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "PD," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including sight critaria pollutante) Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility. taking the process operating schedule into account. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate e		
"separator," "baghouse," or "fugitive." See the MAERT Example for further examples of the source name. Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including sight critaria pollutants) Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	Source Name	Examples of emission point names are: "heater." "vent." 'boiler." "tank." "reactor."
Pollutant List each component or air contaminant name. Examples of component names are; "ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including aight-criteria pollutants are allowed per FIN, and 19 pollutants total function. Pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	· · · · · · · · · · · · · · · · · · ·
"ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note: Certain common pollutants must be listed as follows: "VOC," "PM," "PM10," "PM2.5," "NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including eight criteria pollutants). Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		<u> </u>
Current Short-Term (lb/hr) Current Long-Term (tpy) Consolidated Short-Term (lb/hr) Consolidated Long-Term (tpy) Consolidated Short-Term (tpy) Consolidated Long-Term (tpy) Enter the currents was consequence of the process operating schedule into account terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Consolidated Long-Term (tpy) Enter the currents was consequence of the process operating schedule into account. Enter the currents was consequence of the process operating schedule into account. Enter the currents was consequence of the process operating schedule into account. Enter the currents was consequence of the process operating schedule into account. Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	Pollutant	List each component or air contaminant name. Examples of component names are;
"NOx," "CO," "SO2," "Pb," "H2S," "H2SO4," "TRS," "Exempt Solvents," and "Halogenated Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including eight criteria pollutants) Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		"ETO," "HCI," "CI2," "sulfur," "chrome," or "NH3." Abbreviations are acceptable. Note:
Solvents." A maximum of 13 pollutants are allowed per FIN, and 19 pollutants total (including aight criteria pollutants) Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		
Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		
Current Short-Term (lb/hr) If applicable, enter the current emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		
hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour neriod Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	Current Short-Term (lb/hr)	
One-hour period. Current Long-Term (tpy) If applicable, enter the current emission rate for each pollutant in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	 ()	
Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		
expected by the facility, taking the process operating schedule into account. Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	Current Long-Term (tpy)	If applicable, enter the current emission rate for each pollutant in terms of tons per year.
Consolidated Short-Term (lb/hr) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions
from a Permit by Rule (PBR), standard permit, standard exemption, or other NSR permit in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period. Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		
terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	Consolidated Short-Term (lb/hr)	· · · · · · · · · · · · · · · · · · ·
Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		
Consolidated Long-Term (tpy) Enter the currently authorized emission rate for each pollutant that will be consolidated from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		· · · · · · · · · · · · · · · · · · ·
from a Permit by Rule (PBR), Standard Permit, standard exemption, or other NSR permit in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	Consolidated Long-Term (tpv)	Enter the currently authorized emission rate for each pollutant that will be consolidated
in terms of tons per year. Tons per year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected by the facility, taking the process operating schedule into account. Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.	consolitation Long Tollin (py)	
total maximum emissions expected by the facility, taking the process operating schedule into account Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		
Proposed Short-Term (lb/hr) Enter the proposed emission rate for each pollutant in terms of pounds per hour. Pounds per hour is the maximum short-term emission rate expected to occur in any one-hour period.		
per hour is the maximum short-term emission rate expected to occur in any one-hour period.		into account
period.	Proposed Short-Term (lb/hr)	
		· ·
rroposed Long-Term (tpy) I⊏nter the proposed emission rate for each pollutant in terms of tons per year. Tons per	Dropood Lorer Terre (tree)	
year (tpy) is the annual (any rolling 12 month period) total maximum emissions expected	Froposed Long-Term (tpy)	
Short-Term Difference (lb/hr) This column automatically calculates the difference between the proposed and current	Proposed Long-Term (tpy)	
		by the facility, taking the process operating schedule into account.
	Short-Term Difference (lb/hr)	by the facility, taking the process operating schedule into account. This column automatically calculates the difference between the proposed and current
long-term emission rates, in terms of tons per year.		by the facility, taking the process operating schedule into account.

Date:	
Permit #:	
Company:	

	Enter or select from the drop-down the type of unit that this EPN, FIN, and source name most accurately represent. For additional reference as to applicable unit type, see the "Unit Types" sheet.
Unit Type Notes	If you selected "Other" or need to clarify your unit type, use this column to briefly explain the unit type. Note that this is not meant to be a justifications column.

Sheet: Stack Parameters	
Heading:	Description:
EPN	This column is an automatically compiled list of all EPNs that must have the emission
	rates entered. In this sheet, if no EPN was listed, the Facility ID Number (FIN) will be listed
	instead. For example, if no EPN was given and the FIN was entered as "Stack", this sheet
	will replace the FPN with "FIN: Stack "
Universal Transverse Mercator	The applicant must furnish a facility plot plan drawn to scale showing a plant benchmark.
(UTM) Coordinates of Emission	Latitude and longitude must be correct and to the nearest second for the benchmark, and
Points: Zone, East (meters), and	the dimension of all emission points with respect to the benchmark as required. This
North (meters)	information is essential for the calculation of emission point UTM coordinates. Please
	show emission point UTM coordinates if known. Use the southwest corner as the emission
	noint coordinate for each area source
Building Height (ft)	Enter the height of the building.
Height Above Ground (ft)	Enter the height of the stack above the ground.
Stack Exit Diameter (ft)	Enter the diameter for the stack at the exit.
Velocity (FPS)	Enter the velocity of emissions in actual feet per second.
Temperature (°F)	Enter the actual temperature if the exit temperature is room temperature or climate
	controlled. Enter ambient temperature to represent exit temperatures that are the same as
	the outdoor environment. Flare exit temperatures are not required.
Fugitives - Length (ft)	For area fugitive sources, enter the dimensions of a rectangle, which will "enclose" all
	fugitive sources included in this EPN. Length to width ratio should be 10:1 or less.
	Subdivide larger areas to meet this requirement.
Fugitives - Width (ft)	Enter the width of the fugitive source area.
Fugitives - Axis Degrees	Enter the number of degrees the long axis of the fugitive area is offset from north south.

Sheet: Impacts	
Heading:	Description:
Pollutant	This column is a list of criteria pollutants and up to 11 other listed contaminants from this project. This list will automatically populate.
Does this pollutant require PSD review?	If this project requires a PSD Review, select "Yes;" otherwise select "No."
How will you demonstrate that this project meets all applicable requirements?	If a PSD review is required, a protocol must be included. If a PSD review is not required, another demonstration must be made using one of three approved methods: (1) modeling with an attached, detailed description of how the modeling was conducted; (2) qualitative analysis with an attached, detailed description of how the project meets impacts requirements; or (3) an attached, detailed description explaining why an impacts analysis is not required for this project. This determination is made for each individual pollutant.
Notes	This field is automatically populated with important notes on how to conduct the impacts analysis, based on your chosen demonstration method.
Website For Additional Guidance	This field is automatically populated with a link to information most relevant to your chosen demonstration method.

Sheet: Public Notice	
Heading:	Description:

Date:	
Permit #:	
Company:	

Public Notice Applicability Section	This section is designed to help determine if you need public notice.
Do the facilities handle, load,	Indicate if the facilities are considered agricultural facilities under THSC § 382.020. If a
unload, dry, manufacture, or	facility is considered agricultural, annual emission increases must be compared to the
process grain, seed, legumes, or	appropriate significant levels for agricultural facilities to determine public notice
vegetable fibers (agricultural	applicability. (For nonagricultural facilities, annual emission increases must be compared
facilities)?	to the appropriate de minimis levels)
Pollutant	This column is a list of criteria pollutants and up to 11 other listed contaminants from this
	project. This list will automatically populate.
Current Long-Term (tpy)	This is an automatically-populated summary of the current emission rate for each pollutant
3 (17)	in terms of tons per year.
Consolidated Emissions (tpy)	This is an automatically-populated summary of consolidated emissions, based on entries
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	under the "Unit Types - Emission Rates" sheet. If the emission was marked "Consolidate,"
	its total will appear in this column instead of the "Current Long-Term (tpy)" column.
	- 3 (17)
Proposed Long-Term (tpy)	This is an automatically-populated summary of the proposed emission rate for each
	pollutant in terms of tons per year.
Project Change in Allowable (tpy)	This column is a total difference between current and long-term emission rates for the
	pollutant listed to the left.
PN Threshold	This column is a pollutant-by-pollutant list of PN threshold values to be compared to the
	Project Change in Allowable.
Notice required?	If the spreadsheet calculates that public notice is required from the pollutant to the left, the
	box's message will change from "No" to "Yes."
Person Responsible for Publishing	This is a designated representative who is responsible for ensuring public notice is
	properly published in the appropriate newspaper and signs are posted at the facility site.
	This person will be contacted directly when the TCEQ is ready to authorize public notice
	for the application.
Technical Contact	This is the designated representative who will be listed in the public notice as a contact for
	additional information.
Public Place	A public place is a location which is owned and operated by public funds (such as libraries,
	county courthouses, city halls) and cannot be a commercial enterprise.
Bilingual Program	If an elementary or middle school nearest to the facility is in a school district required by
	the Texas Education Code to have a bilingual program, a bilingual notice will be required.
	If there is no bilingual program required in the school nearest the facility, but children who
	would normally attend those schools are eligible to attend bilingual programs elsewhere in
	the school district, the hilingual notice will also be required
Concrete Batch Plant	All applications for concrete batch plants must complete Section IID, regardless of public
	notice applicability.

Sheet: BACT	
Heading:	Description:
FINs	This tab will automatically populate with the FINs entered on the "Unit Types - Emission Rates" sheet.
Unit Type	This column will automatically populate with the unit type listed for that FIN in the "Unit Types - Emission Rates" tab.
Pollutant	This column will automatically populate with the pollutants listed for that FIN in the "Unit Types - Emission Rates" tab, up to 13 pollutants. The last row under each FIN and unit type is marked "MSS" for Maintenance. Startup, and Shutdown operations.
Tier I BACT	BACT is an emission limitation based on the maximum degree of reduction of each pollutant subject to regulation under the FCAA emitted from or which results from any proposed stationary source. The TCEQ has established Tier I BACT requirements for a number of industry types. The established Tier I requirements will automatically populate for the listed unit type. If one is not listed, or more detail is needed, follow the prompt to add additional detail in the "Additional Notes" column
Confirm	Confirm that you have read and agree to comply with each Tier I BACT requirement by entering or selecting "Yes."

Date:	
Permit #:	
Company:	

Additional Notes: Enter additional	Additional information may be required to clarify the Tier I BACT requirements. Additional
information, if needed	analysis is also required for Tier II, Tier III, and LAER proposals.

Sheet: Monitoring	
Heading:	Description:
EPN	This column is an automatically compiled list of all EPNs that are new, modified, or
	consolidated as identified on the "Unit Type-Emission Rates" sheet. This is the primary
	identifier for each unit type in this sheet.
Unit Type	This column will automatically populate with the unit type listed for that FIN in the "Unit
	Types - Emission Rates" tab.
Pollutant	This column will automatically populate with the pollutants listed for that EPN in the "Unit
	Types - Emission Rates" sheet, up to 13 pollutants.
Minimum Monitoring Requirements	Permits must contain adequate monitoring and recordkeeping requirements to
	demonstrate compliance with the emissions rates for each pollutant emitted from each
	EPN. This column will automatically populate with the minimum required monitoring for the
	listed unit type. If one is not listed, or more detail is needed, follow the prompt to add
	additional detail in the "Additional Notes" column
Confirm	Confirm that you have read and agree to comply with each minimum monitoring
	requirement by entering or selecting "Yes."
Additional Notes	Describe the methodology of determining facility-specific requirements for the operational
	limits placed on this facility. Be specific to the EPN/FIN and pollutant listed.

Date:	
Permit #:	
Company:	

·	
Acronym	Term
ADMT	Air Dispersion Modeling Team
APIRT	Air Permits Initial Review Team
APWL	Air Pollutant Watch List
BACT	Best Available Control Technology
CFR	Code of Federal Regulations
CN	Customer Number
EPN	Emission Point Number
FCAA	Federal Clean Air Act
FIN	Facility Identification Number
GHG	Greenhouse Gas
HAP	Hazardous Air Pollutant
km	kilometer
LAER	Lowest Achievable Emission Rate
lb/hr	pounds per hour
MACT	Maximum Achievable Control Technology
MAERT	Maximum Allowable Emission Rate Table
MSS	Maintenance, Startup, and Shutdown
NA	Nonattainment
NAICS	North American Industry Classification System
NESHAP	National Emission Standards for Hazardous Air Pollutants
NSPS	New Source Performance Standard
NSR	New Source Review
PAL	Plantwide Applicability Limit
PBR	Permit By Rule
POC	Products of combustion
PSD	Prevention of Significant Deterioration
RBLC	RACT/BACT/LAER Clearinghouse
RN	Regulated Entity Reference Number
SE	Standard Exemption
SIC	Standard Industry Classification
SP	Standard Permit
TAC	Texas Administrative Code
TCEQ	Texas Commission on Environmental Quality
THSC	Texas Health and Safety Code
TPY	tons per year

Date:	
Permit #:	
Company:	

Industry Type	Unit Type
Coatings	Abrasive Blasting (Enclosed Booth / Building)
Coatings	Abrasive Blasting (Non-Enclosed)
Mechanical/Agricultural/Construction	Blowing Still
Combustion	Boiler: Hazardous Waste
Chemical/Energy	Boiler: Liquid and Gas Fuel, > 40 MMBtu/hr
Combustion	Boiler: Liquid and Gas Fuel, > 40 MMBtu/hr
Chemical/Energy	Boiler: Liquid and Gas Fuel, ≤ 40 MMBtu/hr
Coatings	Boiler: Liquid and Gas Fuel, ≤ 40 MMBtu/hr
Combustion Combustion	Boiler: Liquid and Gas Fuel, ≤ 40 MMBtu/hr Boiler: Solid Fuel
Chemical/Energy	Bulk Fuel Terminal: Diesel
Chemical/Energy Chemical/Energy	Bulk Fuel Terminal: Ethanol
Chemical/Energy Chemical/Energy	Bulk Fuel Terminal: Gasoline
Chemical/Energy	Bulk Fuel Terminal: Jet Fuel
Chemical/Energy	Bulk Fuel Terminal: Transmix
Mechanical/Agricultural/Construction	Chromic Acid Anodizing
Chemical/Energy	Cleaning: Railcar
Coatings	Cleaning: Railcar/Truck
Chemical/Energy	Cleaning: Truck
Combustion	Coal Loading
Mechanical/Agricultural/Construction	Coal Loading
Chemical/Energy	Control: Absorber
Coatings	Control: Absorber (I.E., Scrubber)
Coatings	Control: Adsorption System (Disposable)
Coatings	Control: Adsorption System (Regenerative)
Chemical/Energy	Control: Adsorption System: Disposable
Chemical/Energy	Control: Adsorption System: Regenerative
Chemical/Energy	Control: Bag Filter/Baghouse
Combustion	Control: Bag Filter/Baghouse
Mechanical/Agricultural/Construction	Control: Bag Filter/Baghouse
Coatings	Control: Baghouse, Cartridge Filter System, Bin Vent Filter
Chemical/Energy	Control: Flare
Combustion	Control: Flare
Coatings	Control: Oxidizer (Catalytic)
Coatings Chemical/Energy	Control: Oxidizer (Thermal) Control: Oxidizer: Catalytic
Chemical/Energy	Control: Oxidizer: Regenerative Thermal
Chemical/Energy	Control: Oxidizer: Thermal
Chemical/Energy	Control: Particulate Scrubber
Coatings	Control: Particulate Scrubber
Chemical/Energy	Control: Vapor Combustor
Combustion	Control: Vapor Combustor
Mechanical/Agricultural/Construction	Cooker
Mechanical/Agricultural/Construction	Cooler
Chemical/Energy	Cooling Tower
Combustion	Cooling Tower
Mechanical/Agricultural/Construction	Cooling Tower
Mechanical/Agricultural/Construction	Cotton Gin
Combustion	Crusher
Mechanical/Agricultural/Construction	Crusher
Coatings	Cultured Marble - Process
Coatings	Degreaser: Cold Solvent Cleaner
Coatings	Degreaser: Conveyorized
Coatings	Degreaser: Hand Wipe
Coatings	Degreaser: Open Top Vapor Degreaser
Coatings Mechanical/Agricultural/Construction	Degreaser: Remote Reservoir Cleaning Die Cast Machine
Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction	
Chemical/Energy	Disperser Dryer
Coatings	Dryer Dryer
Coatings Combustion	Dryer
Mechanical/Agricultural/Construction	Dryer
Mechanical/Agricultural/Construction	Engine
Coatings	Engine: Emergency (Diesel)
Chemical/Energy	Engine: Emergency, Diesel
Combustion	Engine: Emergency, Diesel
Mechanical/Agricultural/Construction	Engine: Emergency, Diesel
Chemical/Energy	Engine: Internal Combustion Engine, Spark Ignited
Combustion	Engine: Internal Combustion Engine, Spark Ignited
	Fiber Reinforced Plastic (FRP) - Process
Coatings	Fiber Remitorced Flastic (FRF) - Flocess
Coatings Chemical/Energy	Fluid Catalytic Cracking Unit

Date:	
Permit #:	
Company:	

Combustion	Fugitives: Building
Mechanical/Agricultural/Construction	Fugitives: Building
Chemical/Energy	Fugitives: Piping and Equipment Leak
Combustion	Fugitives: Piping and Equipment Leak
Mechanical/Agricultural/Construction	Fugitives: Piping and Equipment Leak
Chemical/Energy	Furnace
Coatings	Furnace 10 Maria #
Combustion	Furnace: > 40 MMBtu/hr Furnace: > 40 MMBtu/hr
Mechanical/Agricultural/Construction Combustion	Furnace: > 40 MMBtu/nr Furnace: ≤ 40 MMBtu/hr
Mechanical/Agricultural/Construction	Furnace: ≤ 40 MMBtu/hr
Chemical/Energy	Glycol Dehydrator
Mechanical/Agricultural/Construction	Grain Elevator: Loadout
Mechanical/Agricultural/Construction	Grinder Grinder
Chemical/Energy	Heater
Coatings	Heater
Combustion	Heater > 40 MMBtu/hr
Mechanical/Agricultural/Construction	Heater > 40 MMBtu/hr
Combustion	Heater ≤ 40 MMBtu/hr
Mechanical/Agricultural/Construction	Heater ≤ 40 MMBtu/hr
Coatings	Hopper
Combustion	Hopper
Mechanical/Agricultural/Construction	Hopper Air Cortain
Combustion Combustion	Incinerator: Air Curtain
Combustion	Incinerator: Animal Carcass Incinerator: Hazardous Waste
Combustion	Incinerator: Medical Waste
Combustion	Incinerator: Medical Waste
Mechanical/Agricultural/Construction	Iron and Steel Ladles/Tundish Prep Area
Mechanical/Agricultural/Construction	Iron and Steel Mill Mold Shakeout
Mechanical/Agricultural/Construction	Iron and Steel Mill Scale Processing
Mechanical/Agricultural/Construction	Kiln: Aluminum Production
Combustion	Kiln: Cement
Mechanical/Agricultural/Construction	Kiln: Fiberglass
Mechanical/Agricultural/Construction	Lehr
Coatings	Letdown Tank
Coatings	Loading / Unloading: Railcar
Coatings	Loading / Unloading: Tote/Drum
Coatings Chemical/Energy	Loading / Unloading: Truck Loading: Drum or Tote
Chemical/Energy Chemical/Energy	Loading: Marine Vessel
Chemical/Energy	Loading: Railcar
Chemical/Energy	Loading: Truck
Mechanical/Agricultural/Construction	Material Handling: Aggregate
Mechanical/Agricultural/Construction	Material Handling: Bin
Mechanical/Agricultural/Construction	Material Handling: Chipper
Mechanical/Agricultural/Construction	Material Handling: Chopper
Combustion	Material Handling: Conveyor
Mechanical/Agricultural/Construction	Material Handling: Conveyor
Combustion	Material Handling: Drop Point
Mechanical/Agricultural/Construction	Material Handling: Drop Point
Mechanical/Agricultural/Construction	Material Handling: Mixing Material Handling: Packaging/Ragging
Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction	Material Handling: Packaging/Bagging Material Handling: Product Cleaning
Mechanical/Agricultural/Construction	Material Handling: Product Cleaning Material Handling: Product Collector/Recapture
Mechanical/Agricultural/Construction	Material Handling: Product Handling
Combustion	Material Handling: Product Transfer/Dump
Mechanical/Agricultural/Construction	Material Handling: Product Transfer/Dump
Mechanical/Agricultural/Construction	Material Handling: Raw Materials
Combustion	Material Handling: Receiving
Mechanical/Agricultural/Construction	Material Handling: Receiving
Mechanical/Agricultural/Construction	Material Handling: Sand
Mechanical/Agricultural/Construction	Material Handling: Sanding
Mechanical/Agricultural/Construction	Material Handling: Saw
Combustion	Material Handling: Screen
Mechanical/Agricultural/Construction	Material Handling: Treatment
Coatings Mechanical/Agricultural/Construction	Material Saws
Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction	Metal Spraying Metalizing
Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction	Metalizing Mixer
Chemical/Energy	MSS Activities
Combustion	MSS Activities
Mechanical/Agricultural/Construction	MSS Activities
Chemical/Energy	MSS: Compressor Maintenance

Date:	
Permit #:	
Company:	

Chemical/Energy	MSS: Pipe, Acid
Chemical/Energy	MSS: Pipe, Fuel Gas
Chemical/Energy	MSS: Pipe, Sour Water
Chemical/Energy	MSS: Pipe, Sulfur
Chemical/Energy	MSS: Pipe, VOC < 0.5 PSIa
Chemical/Energy	MSS: Pipe, VOC > 0.5 PSIa
Chemical/Energy	MSS: Pump. Acid
Chemical/Energy	MSS: Pump, Sour Water
Chemical/Energy	MSS: Pump, Sulfur
Chemical/Energy	MSS: Pump, VOC < 0.5 PSIa
Chemical/Energy	MSS: Pump. VOC > 0.5 PSIa
Chemical/Energy	MSS: Valve. Sour Water
Chemical/Energy	MSS: Valve, Sulfur
Chemical/Energy	MSS: Valve, VOC < 0.5 PSIa
Chemical/Energy	MSS: Valve, VOC > 0.5 PSIa
Mechanical/Agricultural/Construction	Oriented Strandboard Mill: Debarker
Mechanical/Agricultural/Construction	Oriented Strandboard Mill: Press
Mechanical/Agricultural/Construction	Oriented Strandboard Mill: Trim Process
Coatings	Oven
Mechanical/Agricultural/Construction	Oven
Coatings	Painting/Surface Coating (Enclosed)
Coatings	Painting/Surface Coating (Non-Enclosed / Outdoor)
Chemical/Energy	Petroleum Coke Storage and Transfer - Delayed Cokers
Chemical/Energy	Polyethylene Facilities
Chemical/Energy	Polypropylene Unit
Coatings	Printing Press: Flexographic
Coatings	Printing Press: Offset/Heatset Lithographic
Coatings	Printing Press: Offset/Non-Heatset Lithographic
Coatings	Printing Press: Rotograyure
Coatings	Process Piping - Chemical Blending and Repackaging
Coatings	Process Piping - Coating and Ink Manufacturing, Semiconductor, Cm/Frp
Coatings	Process Tank - Chemical Blending
Coatings	Process Tank - Coating Manufacturing
Chemical/Energy	Process Vent
Combustion	Process Vent
Mechanical/Agricultural/Construction	Process Vent
Mechanical/Agricultural/Construction	Process: Blending
Mechanical/Agricultural/Construction	Process: Casting
Coatings	Product Packaging - Coating Mfg.
Mechanical/Agricultural/Construction	Rendering: Boilers
Mechanical/Agricultural/Construction	Rendering: High- Intensity Odors from Cookers and Pressers
Mechanical/Agricultural/Construction	Rendering: Meal Storage Silo
Combustion	Roads
Mechanical/Agricultural/Construction	Roads
Mechanical/Agricultural/Construction	Rock Crusher Work Area
Coatings	Sand Mill
Mechanical/Agricultural/Construction	Sand Mill
Mechanical/Agricultural/Construction	Saturator
Mechanical/Agricultural/Construction	Screen
Mechanical/Agricultural/Construction	Separator/Sorter
Chemical/Energy	SRU: Natural Gas Processing Plant
Chemical/Energy	SRU: Refinery
Mechanical/Agricultural/Construction	Sterilization Unit
Coatings	Storage Silo
Chemical/Energy	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia
Chemical/Energy	Storage Tank (2): Fixed roof with capacity ≥ 25,000 gal and 0.50 psia < TVP < 11.0 psia
Chemical/Energy	Storage Tank (3): Fixed roof with TVP ≥ 11.0 psia
Chemical/Energy Chemical/Energy	Storage Tank (4): Floating roof with TVP < 11.0 psia
Coatings	Storage Tank (4): Floating 1001 with FVF < 11.0 psia Storage Tank: Capacity > 1000 Gallons and < 25,000 gal or > 1000 Gallons and TVP < 0.50 PSIa
Coatings	Storage Tank: Capacity ≤ 1000 Gallons
Coatings	Storage Tank: Capacity ≥ 1000 Gallons Storage Tank: Capacity ≥ 25,000 gal and 0.50 PSIa < TVP < 11.0 PSIa
Coatings	Storage Tank: Capacity ≥ 25,000 gal and TVP ≥ 11.0 PSIa
Mechanical/Agricultural/Construction	Storage: Anhydrous Ammonia
Chemical/Energy	Storage: Silo
Combustion	Storage: Silo
Mechanical/Agricultural/Construction	IStorage: Silo
Mechanical/Agricultural/Construction Combustion	Storage: Stocknile
Combustion	Storage: Stockpile
Combustion Mechanical/Agricultural/Construction	Storage: Stockpile Storage: Stockpile
Combustion Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction	Storage: Stockpile Storage: Stockpile Storage: Tank: Chrome
Combustion Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction Coatings	Storage: Stockpile Storage: Stockpile Storage: Tank: Chrome Trimming/Hole Punching
Combustion Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction Coatings Chemical/Energy	Storage: Stockpile Storage: Stockpile Storage: Tank: Chrome Trimming/Hole Punching Turbine: Combined Cycle, Natural Gas
Combustion Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction Coatings Chemical/Energy Combustion	Storage: Stockpile Storage: Stockpile Storage: Tank: Chrome Trimming/Hole Punching Turbine: Combined Cycle, Natural Gas Turbine: Combined Cycle, Natural Gas
Combustion Mechanical/Agricultural/Construction Mechanical/Agricultural/Construction Coatings Chemical/Energy	Storage: Stockpile Storage: Stockpile Storage: Tank: Chrome Trimming/Hole Punching Turbine: Combined Cycle, Natural Gas

Date:	
Permit #:	
Company:	

Chemical/Energy	Wastewater Facilities
Mechanical/Agricultural/Construction	Wastewater: Lagoon/Pond
Mechanical/Agricultural/Construction	Zinc Kettle

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Project Summary

This sheet is a summary of representations made in the workbook for this project. No additional information is required by the applicant.

Project Description

This project is a renewal and amendment of the New Source Review Permit 9423.

Contact Data	
Company	Equistar Chemicals, L.P.
Responsible official	Mr. Anthony Wood
Phone	281-474-0436
Email	Anthony.wood@lyb.com
Technical contact	Ms. Carlisa Navy
Phone	281-474-0727
Email	Carlisa.Navy@lyondellbasell.com

Permit and Action Type Requested		
Permit Type	Action Type	Permit Number
Minor NSR	Renewal/Amendment	9423
Special Permit	Not applicable	
De Minimis	Not applicable	
Flexible	Not applicable	
PSD	Not applicable	
Nonattainment	Not applicable	
HAP Major Source [FCAA § 112(g)]	Not applicable	
PAL	Not applicable	
GHG PSD	Not applicable	

Fees	
Non-Renewal fee	\$900.00
Renewal fee	\$6,083.12
Total Fee	\$6,983.12

Miscellaneous	
TCEQ Region	Region 12
RN	RN100216761
CN	CN600124705
Title V site?	Yes
Industry group	Chemical / Energy
Public notice required?	Yes

Air Pollutant Watch List		
Is this facility located in an APWL area AND this application includes that pollutant?		No
APWL pollutants		

Disaster Review		
Any air contaminants for which a disaster review is required?		No
Disaster review pollutants		

Application contains confidential information?	Yes

Project Timing		
Projected Start of Construction	N/A	
Projected Start of Operation	N/A	

	Project Emission Summary (tpy)				
Pollutant	Current (tpy)	Consolidated Emissions (tpy)	Proposed (tpy)	Project Change in Allowable (tpy)	
VOC	186.06	0.00	175.16	-10.90	
PM	11.01	0.00	20.65	9.64	
PM ₁₀	9.31	0.00	3.78	-5.53	
PM _{2.5}	7.20	0.00	0.86	-6.34	
NO _x	19.90	0.00	19.90	0.00	
CO	160.75	0.00	102.53	-58.22	
SO ₂	2.46	0.00	2.00	-0.46	
Pb	0.00	0.00	0.00	0.00	
H2SO4	0.00	0.00	0.00	0.00	
Exempt Solvents	26.19	0.00	26.19	0.00	
	0.00	0.00	0.00		
	0.00	0.00	0.00		
	0.00	0.00	0.00		
	0.00	0.00	0.00		
	0.00	0.00	0.00		
	0.00	0.00	0.00		
	0.00	0.00	0.00		
	0.00	0.00	0.00		
	0.00	0.00	0.00		
	0.00	0.00	0.00		

Federal Applicability		
County	Harris	
County classification (as of	Serious Ozone nonattainment	
9/23/2019)		
Ozone classification requested	Ozone - Serious	
for this project		
Pollutants requiring PSD review		
Pollutants requiring NA review		

	Impacts	
No impacts required	CO, NOx, SO2, PM, Exempt Solvents,	
Qualitative analysis		
MERA analysis	VOC,	
Modeling	VOC, PM10, PM2.5, H2SO4,	
PSD Protocol		

Version 4.0 Summary

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

General

EMEW Version No.: Version 2.3

Purpose Statement:

This workbook is completed by the applicant and submitted to the Texas Commission on Environmental Quality (TCEQ), specifically, the Air Dispersion Modeling Team (ADMT) for review. This workbook is a tool available for all projects using AERSCREEN, AERMOD, or ISC/ISCPrime for an impacts review and its use is required starting June 1, 2019. Provide the workbook with the permit application submittal for any Minor New Source Review project requiring a modeling impacts demonstration.

This workbook follows the guidance outlined in the Air Quality Modeling Guidelines (APDG 6232) which can be found

https://www.tceg.texas.gov/assets/public/permitting/air/Modeling/guidance/airguality-mod-guidelines6232.pdf

Workbook Instructions:

- 1. Save a copy of the workbook to your computer or desktop prior to entering data.
- 2. Complete all required sections leaving no blanks. You may use the "tab" button or the arrow keys to move to the next available cell. Use "enter" to move down a line. Note: drop-downs are case-sensitive.
- 3. Fill in the workbook in order, do not skip around as this will cause errors. Use caution if changing a previously entered entry
- 4. Not applicable sections of this workbook will be hidden as data is entered. For example, answering "No" to "Is downwash applicable? " will hide these sections of the workbook required only for downwash entry.
- 5. Email the workbook electronic file (EMEW) and any attachments to the Air Permits Initial Review Team. The subject line should read "Company Name - Permit Number (if known) - NSR Permit Application". Email address:
- 6. If printing the EMEW, follow the directions below to create a workbook header.
- Printing the EMEW is not required for submitting to the Air Permits Division (APD); however, you may need to print it for sending to the regional offices, local programs, and for public access if notice is required. To print the workbook, follow the instructions below. Please be aware, several sheets contain large amounts of data and caution should be taken if printing, such as the Speciated Emissions sheet.
- 8. Updates may be necessary throughout the review process. Updated workbooks must be submitted in electronic format to APD. For submittal to regional offices, local programs, or public places you only have to print sheets that had updates. Be sure to change the headers accordingly.

Note: Since this will be part of the permit application, follow the instructions in the Form PI-1 General Application on where to send copies of your EMEW and permit application. The Form PI-1 General Application can be found here: https://www.tceq.texas.gov/permitting/air/guidance/newsourcereview/nsrapp-tools.html

Create Headers Before Printing:

- 1. Right-click one of the workbook's sheet tabs and "Select All Sheets."
- 2. Enter the "Page Layout View" by using the navigation ribbon's View > Workbook Views > Page Layout, or by clicking the page layout icon in the lower-right corner of Excel.
- 3. Add the date, company name, and permit number (if known) to the upper-right header. Note that this may take up to a minute to update your spreadsheet. Select any tab to continue working on the spreadsheet.

Printing Tips:

While APD does not need a hard copy of the full workbook, you may need to print it for sending to the regional offices, local programs, and for public access if notice is required.

- 1. The default printing setup for each sheet in the workbook is set for the TCEQ preferred format. The print areas are set up to not include the instructions on each sheet.
- 2. You have access to change all printing settings to fit your needs and printed font size. Some common options include: -Change what area you are printing (whole active sheet or a selection);
 - -Change the orientation (portrait or landscape);
 - -Change the margin size; and
 - -Change the scaling (all columns on one sheet, full size, your own custom selection, etc.).

Final Modeling Submittal:

Anytime final modeling files are being submitted the applicant should notify the following that modeling files are being sent: permit reviewer assigned, permit reviewer's supervisor, and the modeler assigned from the initial submittal. The following options are available for an applicant to provide modeling (or any other files):

- 1. Applicant can mail or hand deliver the files on an external storage device.
- Applicant can email files smaller than 25mb.
- Applicant can transfer files through an FTP site:
 - a. Applicant may have their own FTP site and can share the files with TCEQ staff.
 - b. Applicants can use the TCEQ FTP site

Instructions for setting up an account on the TCEQ FTP site are located at:

https://ftps.tceq.texas.gov/help/

Date: June 2, 2020 Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P.

		Genera	al
	Acknowled	gement:	Select from the drop down:
Workbook and any necessary a have not changed the TCEQ Ele	ttachments. Ex ctronic Modeli	zed TCEQ Electronic Modeling Evaluation cept for inputting the requested data, I ng Evaluation Workbook in any way, s, formatting, content, or protections.	l agree
	Adı	ministrative Information:	
Data Type:		Facility Information:	
Project Number (6 digits):		316515	
Permit Number:		9423	
Regulated Entity ID (9 digits):		100216761	
Facility Name:		Bayport Polymers Plant	
Facility Address:		12001 Bay Area Blvd. Pasadena, TX	
Facility County (select one):		Harris	
Company Name:		Equistar Chemicals, L.P.	
Company Contact Name:		Carlisa Navy	
Company Contact Number:		(281) 474-0727	
Company Contact Email:		Carlisa.Navy@lyondellbasell.com	
Modeling Company Name, as app	licable:	BGE, Inc.	
Modeling Contact Name:		Albert Kennedy	
Modeling Contact Number:		(737) 443-0453	
Modeling Contact Email:		AKennedy@bgeinc.com	
New/Existing Site (select one):		Existing Site	
Modeling Date (MM/DD/YYYY):		5/18/2020	
Datum Used (select one):		NAD 83	
UTM Zone (select one):		15	
demonstration. Select "X" from the for the following air dispersion mod	e drop down if the dels: AERSCRE	ents which sections are applicable and include item below is included in the workbook. NEEN, ISC/ISCPrime, and/or AERMOD. If SC took (EMEW) for SCREEN3 workbook.	Note: This workbook is only
		Table of Contents:	
Section:	Sheet Title (Clid	ck to jump to specific sheet):	Select an X from the dropdown menu if

	Table of Contents:		
Section:	Sheet Title (Click to jump to specific sheet):	Select an X from the dropdown menu if included:	
1	General	X	
2	Model Options	X	
3	Building Downwash	X	
4	Flare Source Parameters	X	
5	Point Source Parameters	X	
6	Area Source Parameters		
7	Volume Source Calculations	X	
8	Volume Source Parameters	X	
9	Point and Flare Source Emissions	X	
10	Area Source Emissions		
11	<u>Volume Source Emissions</u>	X	
12	Speciated Emissions	X	
13	Intermittent Sources		
14	Modeling Scenarios		
15	Monitor Calculations		
16	Background Justification		
17	Secondary Formation of PM2.5		
18	NAAQS/State Property Line (SPL) Modeling Results	X	
19	Unit Impact Multipliers		
20	Health Effects Modeling Results	X	
21	Modeling File Names	X	
22	Speciated Chemicals	X	

Date: June 2, 2020

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P.

Included Attachments Instructions: The following are attachments that must be included with any modeling analysis. I providing the plot plan and area map with the permit application, ensure there is also a copy with the EMEW. The copy can be electronic.	Select an X from the dropdown menu if included:
Plot Plan:	
Instructions: Mark all that apply in the attached plot plan. For larger properties or dense source	areas, provide multiple
zoomed in plot plans that are legible.	
Property/Fence Lines all visible and marked.	X
North arrow included.	Х
Clearly marked scale.	Х
All sources and buildings are clearly labeled.	Х
Area Map:	
Instructions: Mark all that apply in the attached area map.	
Annotate schools within 3,000ft of source's nearest property line.	X
All property lines are included.	X
Non-industrial receptors are identified.	Choose an item
Additional Attachments (as applicable):	Select an X from the
Note: These are just a few examples of attachments that may need to be included. There may	dropdown menu if
be others depending on the scope of the modeling analysis.	included:
Processed Met Data Information	
Excel spreadsheet of processed meteorology data.	Choose an item
Meteorological Files (all input and outputs).	Choose an item
Source Group Descriptions	
Description of modeling source groups (could be in a tabulated format).	Choose an item
Modeling Techniques and Scenarios Provide all justification and discussion on modeling scenarios used for the modeling analyses. examples of approaches that should be provided but is not all inclusive.	The following boxes are
Discussion on modeling techniques not discussed in workbook.	Choose an item
Justification for exceedance refinements, as applicable.	Choose an item
Discussion and images for worst-case determination, as applicable.	Choose an item
Single Property Line Designation, as applicable	
Include Agreement, Order, and map defining each petitioner.	Choose an item
Post Processing using Unit Impact Multipliers (UIMs)	
Include documentation on any calculations used with the UIMs (i.e., Step 3 of the MERA).	Choose an item
Tier 3 NO ₂ analysis	
If OLM or PVMRM are used, provide all justification and documentation on using this approach	
Description of model setup.	Choose an item
Description and justification of model options selected (i.e., NO ₂ to NO _x in-stack ratios).	Choose an item
2000. pilon ana jaomioanon or modor opilono obiosida (mon, mo 2 to mo x m otasin ando).	
Other Attachments Provide a list in the box below of additional attachments being provided that are not listed abov	re:
<u> </u>	Choose an item

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P.

Date: June 2, 2020

Model Options

I. Project Information

A. Project Overview: In the box below, give a brief Project Overview. To type or insert text in box, double click in the box below. Please limit your response to 2000 characters.

With this renewal/amendment application, Equistar is requesting the following:

- 1) Nomenclature changes of various EPNs
- 2) Increasing ethylene emissions from the flare during MSS activities
- 3) Revising the cooling tower emissions calculations to use the maximum circulation rate for the hourly emissions and average circulation rate for annual emissions
- 4) Updating emissions calculations for process vessels
- 5) Revising emissions calculation basis for stabilizer addition drums to use exit grain loading and flowrate since they are equipped with a baghouse
- 6) Increasing fugitives based on more accurate data
- 7) Updating mineral oil storage tanks to reflect AP-42 revisions published in November 2019
- 8) Adding additional analyzers and changing the existing permit calculations to reflect more accurate vent flow rates
- 9) Adding a new EPN to address plant-wide sampling vents
- 10) Adding an MSS activity to the lists of Routine Maintenance activities found in Attachments B and C to Permit No. 9423
- 11) Consolidation of various permits by rule (PBRs)

II. Air Dispersion Modeling Preliminary Information

Instructions: Fill in the information below based on your modeling setup. The selections chosen in this sheet will carry throughout the sheet and workbook. Based on selections below, only portions of the sheet and workbook will be available. Therefore, it is vital the sheet and workbook are filled out in order, do NOT skip around.

For larger text boxes, double click to type or insert text.

A. Type of N	Nodel Used: Select "X" in all that apply
	AERSCREEN X AERMOD
19191	Enter in all applicable Model Version(s).
B. Building I	Downwash
Yes	Is downwash applicable? (Select "Yes" or "No")
04274	Enter BPIP version (AERMOD and ISCPrime only).
C. Type of A	Analyses: (Select "X" in all that apply)
*PSD project	ts should submit a protocol and not utilize this form.
X	Minor NSR NAAQS X State Property Line
X	Health Effects

Date: June 2, 2020

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P.

Model Options

NAAQS: List all pollutants that require a modeling review. (Select "X" in all that apply) SO ₂ X PM ₁₀	
SO ₂ X PM ₄₂	
CO X PM _{2.5}	
Pb NO ₂	
State Dyanasty Lines List all pollytopte that require a modeling review. (Caleat "V" in all that apply)	
State Property Line: List all pollutants that require a modeling review. (Select "X" in all that apply) H ₂ S SO ₂	
2 7	
Health Effects: Fill in the Speciated Emissions sheet with all applicable pollutants, CAS numbers, and ESLs.	

Date: June 2, 2020 Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P.

	0 () () () () ()	
•		elected and this project is using AERMOD or
AERSCREE	EN, include the population used. S	Select "X" in the box to select an option.
	Urban	
X	Rural	<u></u>
Provide any	additional justification on the disp	persion option selected above:
E D - 4		EDOODEEN AEDMOD : # ## ##-
	nation of Surface Roughness: If A	ERSCREEN or AERMOD is used, fill out the section
	nation of Surface Roughness: <i>If A</i>	ERSCREEN or AERMOD is used, fill out the section
below.	nation of Surface Roughness: If A	ERSCREEN or AERMOD is used, fill out the section AERSURFACE
below.		
below. Select basis	for surface roughness:	AERSURFACE
below. Select basis	for surface roughness:	AERSURFACE ess categories:
below. Select basis	for surface roughness:	AERSURFACE ess categories: X Medium
below. Select basis	of for surface roughness: n one of the three surface roughness.	AERSURFACE ess categories: X
below. Select basis Select "X" in	one of the three surface roughned Low	AERSURFACE Pess categories: X Medium High Delete the following section:
below. Select basis Select "X" in	n one of the three surface roughned Low sing AERSURFACE, please comp	AERSURFACE Pess categories: X Medium High Delete the following section: Version Number
Select "X" in Select "X" in If you are us 13016 301460	n one of the three surface roughned Low sing AERSURFACE, please comp AERSURFACE Center UTM Easting (meters)	AERSURFACE Pess categories: X Medium High Delete the following section:
Select basis Select "X" ir If you are us 13016 301460	n one of the three surface roughned Low sing AERSURFACE, please comp AERSURFACE Center UTM Easting (meters) Study Radius (km)	AERSURFACE Pess categories: X Medium High Delete the following section: Version Number
Select basis Select "X" in If you are us 13016 301460 1 No	in one of the three surface roughned Low Sing AERSURFACE, please comp AERSURFACE Center UTM Easting (meters) Study Radius (km) Airport? (Select Yes or No)	AERSURFACE Pess categories: X Medium High Dete the following section: Version Number 3279840 Center UTM Northing (meters)
Select basis Select "X" ir If you are us 13016 301460 1 No	a one of the three surface roughned Low Sing AERSURFACE, please comp AERSURFACE Center UTM Easting (meters) Study Radius (km) Airport? (Select Yes or No) Continuous Snow Cover (Select	AERSURFACE Pess categories: X
Select basis Select "X" in If you are us 13016 301460 1 No No Average	in one of the three surface roughned Low Sing AERSURFACE, please comp AERSURFACE Center UTM Easting (meters) Study Radius (km) Airport? (Select Yes or No) Continuous Snow Cover (Select Surface Moisture (Select Wet, D	AERSURFACE Pess categories: X
Select basis Select "X" in If you are us 13016 301460 1 No No Average	a one of the three surface roughned Low sing AERSURFACE, please compact AERSURFACE Center UTM Easting (meters) Study Radius (km) Airport? (Select Yes or No) Continuous Snow Cover (Select Surface Moisture (Select Wet, Darid Region? (Select Yes or No)	AERSURFACE Pess categories: X
Select basis Select "X" ir If you are us 13016 301460 1 No	in one of the three surface roughned Low Sing AERSURFACE, please comp AERSURFACE Center UTM Easting (meters) Study Radius (km) Airport? (Select Yes or No) Continuous Snow Cover (Select Surface Moisture (Select Wet, D	AERSURFACE Pess categories: X
Select basis Select "X" in If you are us 13016 301460 1 No No Average	a one of the three surface roughned Low sing AERSURFACE, please compact AERSURFACE Center UTM Easting (meters) Study Radius (km) Airport? (Select Yes or No) Continuous Snow Cover (Select Surface Moisture (Select Wet, Darid Region? (Select Yes or No)	AERSURFACE Pess categories: X

Texas Commission on Environmental Quality Electronic Modeling Evaluation Workbook (EMEW)

Date: June 2, 2020 Permit #: 9423 s, L.P.

Model Options	Company Name: Equistar Chemicals,
lease complete the following section:	
Surface Station	
Innan Air Ctation	

G. Meteorological Data:		
If AERMOD and/or ISC/ISCPrime are selected,	nlease comp	lete the following section:
12918	Surface Stati	
3937	Upper Air Sta	
14.3 Meters (m)		Elevation (AERMOD only)
19191		rsion Number
10101	ALTUIL TO	TOTOLI TAUTIDO
Yes Was TCEQ pre-processed data	Both	Years used
used?		
Please enter the year(s) selected for this meteo	rological data	:
2016 1 Year	2014-2018	5 Years
State property line, health effects	Which analys	sis(es) relied on 1 year?
NAAQS	Which analys	sis(es) relied on 5 years?
Provide any other justification for Meteorological	al Data, as app	olicable.
,,	, u pp	

Date: June 2, 2020

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P. **Model Options**

H. Receptor C	Grid:	
For AERMOD	or ISC/ISCPrime, fill in the follow	ing information on your modeled receptor grid. Note:
		parse) are based on recommended receptor grid
		this is used, fully describe it below.
1 31	3	, ,
25	Motors (m)	Tight Pagenter Specing
	Meters (m)	Tight Receptor Spacing
300	Meters (m)	Tight Receptor Distance
100	Meters (m)	Fine Receptor Spacing
1000	Meters (m)	Fine Receptor Distance
500	Meters (m)	Medium Receptor Spacing
5000	Meters (m)	Medium Receptor Distance
	Meters (m)	Coarse Receptor Spacing
	Meters (m)	Coarse Receptor Distance
Describe any	other receptor grid designs (over	water, GLC _{ni} , SPLD etc.):
		·
I. Terrain:		
	Elevated	
18081	AERMAP Version	
	justification on terrain selection, f	
i oi auditioilai	justinuation on terrain selection, i	III III LIIC DOX DCIOW.

Date: June 2, 2020

Electronic Modeling Evaluation Workbook (EMEW) Company Name: Equistar Chemicals, L.P.

Building Downwash

Facility:

r demity:	ı					
Downwooh Tyno	Modeled Building ID	Tank Diameter (m)	Number of Tiere	Maximum Haight (m)	Tier 1 Height (m)	Tion 2 Hoight (m)
Downwash Type		Tank Diameter (m)	Number of Tiers	Maximum Height (m)	0 ()	Tier 2 Height (m)
Building	CLX		2	36.576	6.096	36.576
Building	WAREHOUS		1	6.096	6.096	
Building	BLD_3		1	21.336	21.336	
Building	BLD_4		1	21.336	21.336	
Building	BLKLOAD		1	12.192	12.192	
Building	BLKLOAD2		1	12.192	12.192	
Building	BLKLOAD3		1	12.192	12.192	
Building	BLKLOAD4		1	12.192	12.192	
Building	CT891		1	7.62	7.62	
Building	CT895		1	7.62	7.62	
Building	CT6901		1	7.62	7.62	
Building	BLD_12		1	3.6576	3.6576	
Building	BLD_13		1	3.6576	3.6576	
Building	BLD_14		1	6.096	6.096	
Building	BLD_15		1	4.8768	4.8768	
Building	BLD_16		1	4.8768	4.8768	
Building	BLD_17		1	4.8768	4.8768	
Building	BLD 18		1	9.144	9.144	
Building	BLD_19		1	3.6576	3.6576	
Other: Downwash	_					
structure for volume						
source calculations	D_3106		1	2.8956	2.8956	
only.						
Other: Downwash						
structure for volume	D_3106B		1	2.48412	2.48412	
source calculations			·			
only.						
Other: Downwash						
structure for volume	D 0504			4 700704	4 700704	
source calculations	D_3504		1	1.700784	1.700784	
only.						
Other: Downwash						
structure for volume						
	D_3113		1	0.94488	0.94488	
source calculations						
only.						
Other: Downwash						
structure for volume	TK_2527A		1	6.858	6.858	
source calculations	111_202771		'	0.000	0.000	
only.						
Other: Downwash						
structure for volume	TK 0507D		4	6.858	0.050	
source calculations	TK_2527B		1	6.858	6.858	
only.						
Other: Downwash						
structure for volume						
	D_4106		1	2.17932	2.17932	
source calculations						
only.						
Other: Downwash						
structure for volume	D_4504		1	1.804416	1.804416	
source calculations			· ·			
only.						
Other: Downwash						
structure for volume	D 6400A		4	2.06272004	2.06272004	
source calculations	D_6106A		1	2.06373984	2.06373984	
only.						
Other: Downwash						
structure for volume						
source calculations	D_6106B		1	1.88390784	1.88390784	
only.						
Other: Downwash						
structure for volume	D 6504		1	1.804416	1.804416	
source calculations			,			
only.						
Other: Downwash						
structure for volume	D 6112		4	1 005	1 005	
source calculations	D_6113		1	1.905	1.905	
only.						
Other: Downwash						
structure for volume					_	
source calculations	T_880		1	3.6576	3.6576	
only.			l			

Date: June 2, 2020

Electronic Modeling Evaluation Workbook (EMEW) Company Name: Equistar Chemicals, L.P.

Building Downwash

Downwash Type	Modeled Building ID	Tank Diameter (m)	Number of Tiers	Maximum Height (m)	Tier 1 Height (m)	Tier 2 Height (m)
Other: Downwash structure for volume source calculations only.	TK_5104C		1	0.88392	0.88392	
Other: Downwash structure for volume source calculations only.	D_6850		1	0.85344	0.85344	
Other: Downwash structure for volume source calculations only.	D_4706		1	1.8288	1.8288	
Other: Downwash structure for volume source calculations only.	TK_152		1	1.61544	1.61544	
Other: Downwash structure for volume source calculations only.	TK_153		1	1.76784	1.76784	
Other: Downwash structure for volume source calculations only.	TK_884		1	2.5908	2.5908	
Other: Downwash structure for volume source calculations only.	TK_895		1	2.5908	2.5908	

Electronic Modeling Evaluation Workbook (EMEW) Flare Source Parameters

Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Facility:

		Modeling	Easting:	Northing:	Base Elevation	Height	Exit	Exit Velocity	Heat Release	Molecular	Gross Heat Release or q	Net Heat	Effective Diameter or	
EPN	Model ID	Scenario	X [m]	Y [m]	[m]	[m]	[K]	[m/s]	(MMBtu/hr)	Weight	(cal/s)	(cal/s)	D (meters)	Description
FL-3706	FL 3706M	ALL	301711.01	3280050.02	5.15	91.44	1273.00	20.00	1096.00	41.06	76720000	53122863.54	7.29	Elevated Flare (MSS)
FL-3706	FL_3/UbiVi	ALL	301711.01	3280050.02	5.15	91.44	1273.00	20.00	1096.00	41.06	0	0	0	Elevated Flare (MSS)
							1273.00	20.00			0	0	0	
	+			-			1273.00	20.00		-	0	0	0	
	+			-			1273.00	20.00		-	0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
				1			1273.00	20.00			0	0	0	
	+						1273.00	20.00			0	0	0	
	+						1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
	+					1	1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
	1			1			1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
<u> </u>							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
							1273.00	20.00			0	0	0	
				ļ			1273.00	20.00			0	0	0	
				1			1273.00	20.00			0	0	0	
				ļ			1273.00	20.00			0	0	0	
				ļ			1273.00	20.00			0	0	0	
				.			1273.00	20.00			0	0	0	
				1			1273.00	20.00			0	0	0	
		1	l		l		1273.00	20.00		1	0	0	0	

Electronic Modeling Evaluation Workbook (EMEW)
Point Source Parameters

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Facility:

racility:								Base				
		Modeling		Point Source		Easting:	Northing:	Elevation			Exit Velocity	
EPN	Model ID	Scenario	Source Description	Type	Point Source Justification	X [m]	Y [m]	[m]	Height [m]	[K]	[m/s]	Diameter [m]
					Vertical Stack. Actual Stack							
CT-6901		ALL		POINT	Parameters. 15°F above ambient							
	CT_6901A		East Marley Cooling Tower		temperature	301471.49	3279921.65	4.97	10.668	-8.3333333	4.572	7.3152
CT-6901		ALL		POINT	Vertical Stack. 15°F above							
C1-0901	CT_6901B	ALL	East Marley Cooling Tower	FOINT	ambient temperature	301471.4	3279910.71	4.94	10.668	-8.3333333	4.572	7.3152
					TCEQ default parameters used							
FL-3706		ALL		POINT	with calculated effective flare							
	FL_3706M		Elevated Flare (MSS)		diameter	301711.01	3280050.02	5.15		1273		7.29
F-5102	F_5102	ALL	CLX Additive System	POINT	Vertical Stack	301184	3279653	4.77		0		0.1524
S-5203D	S_5203D	ALL	CLX Pellet Silos	POINT	Vertical Stack	301095	3279648	4.78	9.144	325.705556		0.381
F-6801	F_6801	ALL	ELX Central Vacuum Clear	POINT	Vertical Stack	301510	3279921	4.91	0.6096	0		0.10158984
F-4801	F_4801	ALL	DLX Central Vacuum Clear	POINT	Vertical Stack	301539	3279928	4.73	0.6096	0	7.245096	0.1524
PP-SAMPL	PPSAMPLC	ALL	Sampling Vent C-Line	POINT	Vertical Stack	301417	3279798	4.91		358.15		0.0508
PP-SAMPL	PPSAMPLD	ALL	Sampling Vent D-Line	POINT	Vertical Stack	301517	3279797	4.88		358.15	0.001	0.0508
PP-SAMPL	PPSAMPLE	ALL	Sampling Vent E-Line	POINT	Vertical Stack	301619	3279797	4.93	0.6096	358.15	0.001	0.0508
	1											
	1	1										
	1	1										
	1	1										
	1	1										
	1	1	1		1						1	

Electronic Modeling Evaluation Workbook (EMEW) Volume Source Calculations

Date: June 2, 2020 Permit #: 9423

aci	ility	:

raciity.					- W W.				14 4 1	T 011 0 11 1		5		
		Footprint of	Footprint of		Type of Volume Source (sigma y)	Sigma Y			Vertical	Type of Volume Source (sigma z)	Release Height	Building Name		Sigma Z
		Source	Source	Length of Side (making			Vertical Span	Vertical Span	Dimension		(middle point of	(if on/adjacent to a	Adjacent Building	
		Law oth (co.)	Mariana ()	it a square)	muse in the	()	Min Dalance (m)	M D -1 ()	()	muse a second	vertical span)	building)	Height, if applicable	()
EPN	Model ID	Length (m)	Width (m)	SQRT(L * W)	Pick from drop-down	(m)	Min Release (m)	()	(m)	Pick from drop-down	(m)	Pick from drop-down	(m)	(m)
D-3106	D_3106	0.50	0.50	0.50	Single Volume Source	0.12	0.00	2.90	2.90	Elevated Source: On or adjacent to Building	1.45	D_3106	2.90	1.35
D-3106B	D_3106B	0.50	0.50	0.50	Single Volume Source	0.12	0.00	2.48	2.48	Elevated Source: On or adjacent to Building	1.24	D_3106B	2.48	1.16
D-3504	D_3504	0.50	0.50	0.50	Single Volume Source	0.12	0.00	1.70	1.70	Elevated Source: On or adjacent to Building	0.85	D_3504	1.70	0.79
D-3113	D_3113	0.50	0.50	0.50	Single Volume Source	0.12	0.00	0.94	0.94	Elevated Source: On or adjacent to Building	0.47	D_3113	0.94	0.44
TK-2527A	TK_2527A	0.50	0.50	0.50	Single Volume Source	0.12	0.00	6.86	6.86	Elevated Source: On or adjacent to Building	3.43	TK_2527A	6.86	3.19
TK-2527B	TK_2527B	0.50	0.50	0.50	Single Volume Source	0.12	0.00	6.86	6.86	Elevated Source: On or adjacent to Building	3.43	TK_2527B	6.86	3.19
D-4106	D_4106	0.50	0.50	0.50	Single Volume Source	0.12	0.00	2.18	2.18	Elevated Source: On or adjacent to Building	1.09	D_4106	2.18	1.01
D-4504	D_4504	0.50	0.50	0.50	Single Volume Source	0.12	0.00	1.80	1.80	Elevated Source: On or adjacent to Building	0.90	D_4504	1.80	0.84
D-6106A	D_6106A	0.50	0.50	0.50	Single Volume Source	0.12	0.00	2.06	2.06	Elevated Source: On or adjacent to Building	1.03	D_6106A	2.06	0.96
D-6106B	D_6106B	0.50	0.50	0.50	Single Volume Source	0.12	0.00	1.88	1.88	Elevated Source: On or adjacent to Building	0.94	D_6106B	1.88	0.88
D-6504	D_6504	0.50	0.50	0.50	Single Volume Source	0.12	0.00	1.80	1.80	Elevated Source: On or adjacent to Building	0.90	D_6504	1.80	0.84
D-6113	D_6113	0.50	0.50	0.50	Single Volume Source	0.12	0.00	1.91	1.91	Elevated Source: On or adjacent to Building	0.95	D_6113	1.91	0.89
T-880	T_880	0.50	0.50	0.50	Single Volume Source	0.12	0.00	3.66	3.66	Elevated Source: On or adjacent to Building	1.83	T_880	3.66	1.70
E-FUG	E_FUG	36.58	76.20	52.79	Single Volume Source	12.28	0.00	15.24	15.24	Surface-Based Source	7.62			7.09
M-42591	M_42591	6.10	6.10	6.10	Single Volume Source	1.42	0.00	6.10	6.10	Surface-Based Source	3.05			2.84
F-583	F_583	6.10	6.10	6.10	Single Volume Source	1.42	0.00	6.10	6.10	Surface-Based Source	3.05			2.84
F-5303	F_5303	6.10	6.10	6.10	Single Volume Source	1.42	0.00	6.10	6.10	Surface-Based Source	3.05	TIV 51010		2.84
TK-5104C	TK_5104C	0.50	0.50	0.50	Single Volume Source	0.12	0.00	0.88	0.88	Elevated Source: On or adjacent to Building	0.44	TK_5104C	0.88	0.41
D-6850	D_6850	0.50	0.50	0.50	Single Volume Source	0.12	0.00	0.85	0.85	Elevated Source: On or adjacent to Building	0.43	D_6850	0.85	0.40
MSS43	MSS43	36.58	76.20	52.79	Single Volume Source	12.28	0.00	15.24	15.24	Surface-Based Source	7.62			7.09
				0.00		Incomplete			0.00		0.00			Incomplete
D-4706	D_4706	0.50	0.50	0.50	Single Volume Source	0.12	0.00	1.83	1.83	Elevated Source: On or adjacent to Building	0.91	D_4706	1.83	0.85
TK-884	TK_884	0.50	0.50	0.50	Single Volume Source	0.12	0.00	2.59	2.59	Elevated Source: On or adjacent to Building	1.30	TK_884	2.59	1.21
TK-895	TK_895	0.50	0.50	0.50	Single Volume Source	0.12	0.00	2.59	2.59	Elevated Source: On or adjacent to Building	1.30	TK_895	2.59	1.21
MSS61	MSS61	5.89	2.80	4.06	Single Volume Source	0.94	0.00	3.66	3.66	Surface-Based Source	1.83			1.70
MSS62	MSS62	5.89	2.80	4.06	Single Volume Source	0.94	0.00	3.66	3.66	Surface-Based Source	1.83			1.70
MSS63 MSS64	MSS63 MSS64	8.08	4.11 4.11	5.77 5.77	Single Volume Source	1.34	0.00	3.66 3.66	3.66	Surface-Based Source Surface-Based Source	1.83 1.83			1.70 1.70
U-FUG	U FUG	9.14	4.11	6.47	Single Volume Source Single Volume Source	1.50	0.00	6.10	6.10	Surface-Based Source Surface-Based Source	3.05			2.84
D-FUG		36.58		52.79		12.28		15.24	15.24					7.09
D-FUG	D_FUG	36.58	76.20	0.00	Single Volume Source	Incomplete	0.00	15.24	0.00	Surface-Based Source	7.62 0.00			7.09 Incomplete
				0.00		Incomplete			0.00		0.00			
				0.00					0.00		0.00			Incomplete
				0.00		Incomplete			0.00		0.00			Incomplete
				0.00		Incomplete			0.00		0.00			Incomplete
	+	1		0.00		Incomplete			0.00		0.00			Incomplete
				0.00		Incomplete			0.00		0.00			Incomplete
	1	1		0.00		Incomplete			0.00		0.00			Incomplete Incomplete
	1	1		0.00		Incomplete			0.00		0.00			Incomplete
	1	1		0.00		Incomplete			0.00		0.00			Incomplete
	1	1		0.00		Incomplete			0.00		0.00			Incomplete
	1	1		0.00		Incomplete			0.00		0.00			Incomplete
	1	1		0.00		Incomplete			0.00		0.00			Incomplete
	1	1		0.00		Incomplete			0.00		0.00			Incomplete
		†		0.00		Incomplete			0.00		0.00			Incomplete
	+	†		0.00		Incomplete			0.00		0.00			Incomplete
	+	†		0.00		Incomplete			0.00		0.00			Incomplete
				0.00		Incomplete			0.00		0.00			Incomplete
				0.00		Incomplete			0.00		0.00			Incomplete
1	1	1		0.00		oompiete	-		0.00	l .	0.00	II.		

Electronic Modeling Evaluation Workbook (EMEW) Volume Source Parameters

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

Facility:

racility:											
EPN	Model ID	Modeled Release Height [m]	Modeled Length X [m]	Lateral Dimension SigmaY [m]	Vertical Dimension SigmaZ [m]	Modeling Scenario	Easting: X [m]	Northing: Y [m]	Base Elevation [m]	Source Description	Volume Source Size Justification
D-3106	D_3106	1.45	0.50	0.12	1.35	ALL	301405.00	3279855.00	4.77	Catalyst Dispersion Drum	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-3106B	D_3106B	1.24	0.50	0.12	1.16	ALL	301410.00	3279839.00	4.97	Catalyst Dispersion Drum	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-3504	D_3504	0.85	0.50	0.12	0.79	ALL	301404.00	3279791.00	4.91	Stabalizer Additive Drum	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-3113	D_3113	0.47	0.50	0.12	0.44	ALL	301433.00	3279849.00	4.88	Additive Drum Seal Pot	0.5 m x 0.5 m area representative of openings where emissions can originate.
TK-2527A	TK_2527A	3.43	0.50	0.12	3.19	ALL	301112.00	3279774.00	4.78	CLX Mineral Oil Tank	0.5 m x 0.5 m area representative of openings where emissions can originate.
TK-2527B	TK_2527B	3.43	0.50	0.12	3.19	ALL	301113.00	3279783.00	4.76	CLX Mineral Oil Tank	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-4106	D_4106	1.09	0.50	0.12	1.01	ALL	301505.00	3279871.00	4.77	Catalyst Dispersion Drum	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-4504	D_4504	0.90	0.50	0.12	0.84	ALL	301502.00	3279784.00	4.95	Stabilizer Additive Drum	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-6106A	D_6106A	1.03	0.50	0.12	0.96	ALL	301608.00	3279870.00	4.80	Catalyst Dispersion Drum	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-6106B	D_6106B	0.94	0.50	0.12	0.88	ALL	301608.00	3279870.00	4.80	Catalyst Dispersion Drum	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-6504	D_6504	0.90	0.50	0.12	0.84	ALL	301599.00	3279785.00	4.85	Stalilizer Additive Drum	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-6113	D_6113	0.95	0.50	0.12	0.89	ALL	301638.00	3279828.00	4.80	Additive Drum Seal Pot	0.5 m x 0.5 m area representative of openings where emissions can originate.
T-880	T_880	1.83	0.50	0.12	1.70	ALL	301575.00	3279896.00	4.83	Mineral Oil Tank	0.5 m x 0.5 m area representative of openings where emissions can originate.
E-FUG	E_FUG	7.62	52.79	12.28	7.09	ALL	301612.00	3279821.00	4.98	Fugitives	Representative of area in which fugitives may emanate during an hour.
M-42591	M_42591	3.05	6.10	1.42	2.84	ALL	301524.00	3279751.00	4.88	C-Line Railcar Loading	Representative of area in which fugitives may emanate during an hour.
F-583	F_583	3.05	6.10	1.42	2.84	ALL	301267.00	3279724.00	4.33	D-Line Railcar Loading	Representative of area in which fugitives may emanate during an hour.
F-5303	F_5303	3.05	6.10	1.42	2.84	ALL	301065.00	3279676.00	4.60	CLX Railcar Loading	Representative of area in which fugitives may emanate during an hour.
TK-5104C	TK_5104C	0.44	0.50	0.12	0.41	ALL	301183.00	3279648.00	4.75	CLX Peroxide Tank	0.5 m x 0.5 m area representative of openings where emissions can originate.
D-6850	D_6850	0.43	0.50	0.12	0.40	ALL	301606.00	3279876.00	4.65	DLX/ELX Peroxide Tank	0.5 m x 0.5 m area representative of openings where emissions can originate.
MSS43	MSS43	7.62	52.79	12.28	7.09	ALL	301612.00	3279821.00	4.98	E-Line Maintenance Shutdown	Representative of area in which fugitives may emanate during an hour.
D-4706	D_4706	0.91	0.50	0.12	0.85	ALL	301522.00	3279875.00	4.53	DLN Additive Drum	0.5 m x 0.5 m area representative of openings
TK-884	TK_884	1.30	0.50	0.12	1.21	ALL	301442.00	3279956.00	4.74		where emissions can originate. 0.5 m x 0.5 m area representative of openings
TK-895	TK_895	1.30	0.50	0.12	1.21	ALL	301326.00	3279921.00	4.86	Tank Xcel CT - Sulfuric Acid Tank	where emissions can originate. 0.5 m x 0.5 m area representative of openings
MSS61	MSS61	1.83	4.06	0.94	1.70	ALL	301431.00	3279827.00	4.89	C-Line Loop Reactors Emptying	where emissions can originate. Representative of area in which fugitives may
MSS62	MSS62	1.83	4.06	0.94	1.70	ALL	301530.00	3279827.00	4.88	D-Line Loop Reactors Emptying	emanate during an hour. Representative of area in which fugitives may emanate during an hour.
MSS63	MSS63	1.83	5.77	1.34	1.70	ALL	301635.00	3279825.00	4.81	E-Line Loop Reactors Emptying	Representative of area in which fugitives may emanate during an hour.
							l .	l .	L	1	emanate during an nour.

Electronic Modeling Evaluation Workbook (EMEW)
Volume Source Parameters

Date: June 2, 2020 Permit #: 9423

		Modeled Release	Modeled Length X	Lateral Dimension	Vertical Dimension	Modeling	Easting:	Northing:	Base Elevation		
EPN	Model ID	Height [m]	[m]	SigmaY [m]	SigmaZ [m]	Scenario	X [m]	Y [m]	[m]	Source Description	Volume Source Size Justification
MSS64	MSS64	1.83	5.77	1.34	1.70	ALL	301604.00	3279794.00	4.83	E-Line Gas Phase Reactors Emptying	Representative of area in which fugitives may emanate during an hour.
U-FUG	U_FUG	3.05	6.47	1.50	2.84	ALL	301717.00	3280047.00	5.21	Utilities Fugitives	Representative of area in which fugitives may emanate during an hour.
D-FUG	D_FUG	7.62	52.79	12.28	7.09	ALL	301514.00	3279821.00	4.98	Fugitives	Representative of area in which fugitives may emanate during an hour.

Electronic Modeling Evaluation Workbook (EMEW) Point + Flare Emissions

Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Facility:

EPN Model ID FL-3706 FL-3706M CT-6901 CT-6901 CT-6901 CT-6901B CT-6901 CT-6901B F-5102 F-5102 F-5102 F-5102 F-5102 F-5102 S-5203D S-5203D S-5203D S-5203D S-5203D S-5203D F-6801 F-6801 F-6801 F-6801 F-4801 F-4801 F-4801 F-4801 F-4801 F-4801 F-4801 F-4801 PP-SAMPL PPSAMPLO	ALL	Pollutant Health Effects Pollutant Health Effects Pollutant Health Effects Pollutant Health Effects Pollutant PM10 PM2.5 PM2.5 PM10	Modeled Averaging Time 1-hr 1-hr 1-hr 24-hr Annual 24-hr Annual 24-hr Annual 24-hr Annual 24-hr Annual 24-hr Annual	Standard Type Health Effects Health Effects Health Effects NAAQS	Review Context Project Wide Project Wide Project Wide SIL analysis	Intermittent Source? No	0.0103 0.00510 0.00514 0.0801	Basis of Emission Rate Project Increase	Scalars or Factors Used? No	Scalar/Factor in Use
FL-3706 FL 3706M CT-6901 CT 6901A CT-6901 CT 6901B F-5102 F 5102 F-5102 F 5102 F-5102 F 5102 F-5203D S 5203D S-5203D S 5203D S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801	Scenario ALL ALL ALL ALL ALL ALL ALL ALL ALL A	Health Effects Pollutant Health Effects Pollutant Health Effects Pollutant PM10 PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5	Time 1-hr 1-hr 1-hr 24-hr Annual 24-hr Annual 24-hr Annual 24-hr Annual 24-hr Annual	Health Effects Health Effects Health Effects NAAQS	Project Wide Project Wide Project Wide SilL analysis	Source? No	0.0103 0.00510 0.00514 0.0801	Basis of Emission Rate Project Increase	Used? No No No No No No No No	Scalar/Factor in Use
FL-3706 FL 3706M CT-6901 CT 6901A CT-6901 CT 6901B F-5102 F 5102 F-5102 F 5102 F-5102 F 5102 F-5203D S 5203D S-5203D S 5203D S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801	ALL	Health Effects Pollutant Health Effects Pollutant Health Effects Pollutant PM10 PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5	1-hr 1-hr 1-hr 24-hr 24-hr Annual 24-hr 24-hr 24-hr Annual 24-hr Annual 24-hr 4-hr 4-hr 4-hr	Health Effects Health Effects Health Effects NAAQS	Project Wide Project Wide Project Wide SilL analysis	No No No No No No No	0.0103 0.00510 0.00514 0.0801	Project Increase Project Increase Project Increase Project Increase Project Increase Project Increase	No No No No No	Scalarractor in USE
CT-6901 CT 6901A CT-6901 CT 6901B F-5102 F 5102 F-5102 F 5102 F-5102 F 5102 S-5203D S 5203D S-5203D S 5203D S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-4801 F 4801	ALL	Health Effects Pollutant Health Effects Pollutant PM10 PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5	1-hr 1-hr 24-hr 24-hr Annual 24-hr 24-hr 24-hr 24-hr Annual 24-hr Annual	Health Effects Health Effects NAAQS	Project Wide Project Wide SIL analysis SIL analysis SIL analysis SIL analysis SIL analysis SIL analysis	No No No No No No	0.00510 0.00514 0.0801	Project Increase Project Increase Project Increase Project Increase Project Increase Project Increase	No No No No No	
CT-6901 CT 69018 F-5102 F 5102 F-5102 F 5102 F-5102 F 5102 F-5102 F 5102 S-5203D S 5203D S-5203D S 5203D S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801	ALL	Health Effects Pollutant PM10 PM2.5 PM2.5 PM10 PM2.5	1-hr 24-hr 24-hr Annual 24-hr 24-hr Annual 24-hr Annual 24-hr Annual	Health Effects NAAQS	Project Wide SIL analysis SIL analysis SIL analysis SIL analysis SIL analysis SIL analysis	No No No No No No	0.00510 0.00514 0.0801	Project Increase Project Increase Project Increase Project Increase	No No No	_
F-5102 F 5102 F-5102 F 5102 F-5102 F 5102 F-5102 F 5102 S-5203D S 5203D S-5203D S 5203D S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 6801 F-4801 F 4801	ALL	PM10 PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10 PM2.5 PM10 PM2.5 PM2.5	24-hr 24-hr Annual 24-hr 24-hr Annual 24-hr Annual 24-hr 24-hr Annual	NAAQS NAAQS NAAQS NAAQS NAAQS NAAQS NAAQS	SIL analysis	No No No No	0.00510 0.00514 0.0801	Project Increase Project Increase Project Increase	No No No	
F-5102 F 5102 F-5102 F 5102 F-5102 F 5102 S-5203D S 5203D S-5203D S 5203D S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801	ALL	PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10 PM2.5 PM10 PM2.5 PM2.5	24-hr Annual 24-hr 24-hr Annual 24-hr Annual 24-hr 24-hr Annual	NAAQS NAAQS NAAQS NAAQS NAAQS NAAQS	SIL analysis SIL analysis SIL analysis SIL analysis SIL analysis SIL analysis	No No No	0.00510 0.00514 0.0801	Project Increase Project Increase	No No	
F-5102 F 5102 S-5203D S 5203D S-5203D S 5203D S-5203D S 5203D S-5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801 P-SAMPL PPSAMPLC	ALL	PM2.5 PM10 PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM2.5 PM1.5	Annual 24-hr 24-hr Annual 24-hr 24-hr Annual	NAAQS NAAQS NAAQS NAAQS NAAQS	SIL analysis SIL analysis SIL analysis SIL analysis SIL analysis	No No No	0.00514 0.0801	Project Increase	No	
S-5203D S 5203D S-5203D S 5203D S-5203D S 5203D S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801 F-4801 F 4801 F-4801 F 4801 P-SAMPL PPSAMPLC	ALL	PM10 PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10	24-hr 24-hr Annual 24-hr 24-hr Annual	NAAQS NAAQS NAAQS NAAQS	SIL analysis SIL analysis SIL analysis	No No	0.0801			
S-5203D S 5203D S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801 F-4801 F 4801 F-4801 F 4801 F-4801 F 4801 P-SAMPL PPSAMPLC	ALL ALL ALL ALL ALL ALL ALL ALL	PM2.5 PM2.5 PM10 PM2.5 PM2.5 PM10	24-hr Annual 24-hr 24-hr Annual	NAAQS NAAQS NAAQS	SIL analysis SIL analysis	No				
S-5203D S 5203D F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801 F-4801 F 4801 F-4801 F 4801 F-4801 F 4801 P-SAMPL PPSAMPLC	ALL ALL ALL ALL ALL ALL ALL	PM2.5 PM10 PM2.5 PM2.5 PM10	Annual 24-hr 24-hr Annual	NAAQS NAAQS	SIL analysis		0.0400	Project Increase	No	
F-6801 F 6801 F-6801 F 6801 F-6801 F 6801 F-4801 F 4801 F-4801 F 4801 F-4801 F 4801 P-SAMPL PPSAMPLC	ALL ALL ALL ALL ALL	PM10 PM2.5 PM2.5 PM10	24-hr Annual	NAAQS		No	0.0400	Project Increase	No	
F-6801 F 6801 F-4801 F 4801 F-4801 F 4801 F-4801 F 4801 PP-SAMPL PPSAMPLC	ALL ALL ALL	PM2.5 PM10	Annual	NAAOS	SIL analysis	No	0.00240	Project Increase	No	
F-6801 F 6801 F-4801 F 4801 F-4801 F 4801 F-4801 F 4801 PP-SAMPL PPSAMPLC	ALL ALL	PM10			SIL analysis	No	0.00120	Project Increase	No	
F-4801 F_4801 F-4801 F_4801 PP-SAMPL PPSAMPLC	ALL			NAAQS	SIL analysis	No	0.00121	Project Increase	No	
F-4801 F_4801 PP-SAMPL PPSAMPLO			24-hr	NAAQS	SIL analysis	No	0.00270	Project Increase	No	
PP-SAMPL PPSAMPLO	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	0.00140	Project Increase	No	
		PM2.5	Annual	NAAQS	SIL analysis	No	0.00137	Project Increase	No	
PP-SAMPL PPSAMPLO	C ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00925	Project Increase - 24-hour average emission rate	No	
	C ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	0.00463	Project Increase - 24-hour average emission rate	No	
PP-SAMPL PPSAMPLO	C ALL	PM2.5	Annual	NAAQS	SIL analysis	No	2.90E-04	Project Increase	No	
PP-SAMPL PPSAMPLE	O ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00925	Project Increase - 24-hour average emission rate	No	
PP-SAMPL PPSAMPLE	O ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	0.00463	Project Increase - 24-hour average emission rate	No	
PP-SAMPL PPSAMPLE) ALL	PM2.5	Annual	NAAQS	SIL analysis	No	2.90E-04	Project Increase	No	
PP-SAMPL PPSAMPLE		PM10	24-hr	NAAQS	SIL analysis	No	0.00925	Project Increase - 24-hour average emission rate	No	
PP-SAMPL PPSAMPLE	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	0.00463	Project Increase - 24-hour average emission rate	No	
PP-SAMPL PPSAMPLE	E ALL	PM2.5	Annual	NAAQS	SIL analysis	No	2.90E-04	Project Increase	No	
							-			-
									1	

Electronic Modeling Evaluation Workbook (EMEW) Volume Source Emissions

Date: June 2, 2020 Permit #: 9423

cility:											
		Modeling		Modeled Averaging			Intermittent	Modeled Emission		Scalars or Factors	
EPN	Model ID	Scenario	Pollutant	Time	Standard Type	Review Context	Source?	Rate [lb/hr]	Basis of Emission Rate	Used?	Scalar/Factor in Use
D-3106	D 3106	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	. ,	Project Increase	No	
D-3106	D 3106	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
D-3106B	D 3106B	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-3106B	D 3106B	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
D-3504	D 3504	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00500	Project Increase	No	
D-3504	D_3504	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-3504	D_3504	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
D-3113	D_3113	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
TK-2527A	TK_2527A	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
TK-2527B	TK_2527B	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-4106	D 4106	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-4106	D_4106	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
D-4504	D_4504	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00500	Project Increase	No	
D-4504	D_4504	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-6106A	D_6106A	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-6106A	D_6106A	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
D-6106B	D_6106B	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-6106B	D_6106B	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
D-6504	D_6504	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.0150	Project Increase	No	
D-6504	D 6504	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	0.00260	Project Increase	No	
D-6504	D_6504	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	7.53E-06	Project Increase	No	
D-6504	D_6504	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-6113	D_6113	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-6113	D_6113	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
T-880	T_880	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
E-FUG	E_FUG	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
E-FUG	E FUG	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
M-42591	M_42591	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.0129	Project Increase	No	
M-42591	M 42591	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	0.00640	Project Increase	No	
M-42591	M_42591	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	0.00644	Project Increase	No	
F-583	F_583	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.0129	Project Increase	No	
F-583	F_583	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	0.00640	Project Increase	No	
F-583	F_583	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	0.00644	Project Increase	No	
F-5303	F_5303	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00140	Project Increase	No	
TK-5104C	TK_5104C	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-6850	D 6850	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No No	
D-6850	D_6850	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase		
MSS43 D-4706	MSS43 D 4706	ALL ALL	Health Effects Pollutant Health Effects Pollutant	Annual 1-hr	Health Effects Health Effects	Project Wide Proiect Wide	No No		Project Increase Project Increase	No No	
D-4706 D-4706	D_4706 D_4706	ALL	Health Effects Pollutant Health Effects Pollutant	Annual	Health Effects		No No		Project increase Proiect Increase	No No	
D-4706 TK-884	TK 884	ALL	Health Effects Pollutant H2SO4	Annuai 1-hr	State Property Line	Project Wide Project Wide	No No	5.06E-04	Project Increase Project Increase	No No	
TK-884	TK 884	ALL	H2SO4	24-hr	State Property Line State Property Line	Project Wide		5.06E-04 5.06E-04		No No	
TK-884 TK-895	TK_884	ALL	H2SO4 H2SO4	24-nr 1-hr	State Property Line State Property Line	Project Wide Project Wide	No No	5.06E-04 5.06E-04	Project Increase Proiect Increase	No No	
TK-895	TK 895	ALL	H2SO4	24-hr	State Property Line State Property Line	Project Wide	No No	5.06E-04 5.06E-04	Project increase Project Increase	No No	
		ALL	HZ3U4	∠4-111		Project wide	INU	3.U0E-U4	Project increase Project Increase - Average 24-	INO	
MSS61	MSS61	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00130	hour emission rate	No	
MSS61	MSS61	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	2.00E-04	Project Increase - Average 24- hour emission rate	No	
MSS61	MSS61	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	1.00E-05	Project Increase	No	
MSS62	MSS62	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00130	Project Increase - Average 24- hour emission rate	No	
MSS62	MSS62	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	2.00E-04	Project Increase - Average 24- hour emission rate	No	

Electronic Modeling Evaluation Workbook (EMEW) Volume Source Emissions

Date: June 2, 2020 Permit #: 9423

		Modeling		Modeled Averaging			Intermittent	Modeled Emission		Scalars or Factors	
EPN	Model ID	Scenario	Pollutant	Time	Standard Type	Review Context	Source?	Rate [lb/hr]	Basis of Emission Rate	Used?	Scalar/Factor in Use
MSS62	MSS62	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	1.00E-05	Project Increase	No	
MSS63	MSS63	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00130	Project Increase - Average 24- hour emission rate	No	
MSS63	MSS63	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	2.00E-04	Project Increase - Average 24- hour emission rate	No	
MSS63	MSS63	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	1.00E-05	Project Increase	No	
MSS64	MSS64	ALL	PM10	24-hr	NAAQS	SIL analysis	No	0.00215	Project Increase - Average 24- hour emission rate	No	
MSS64	MSS64	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	3.25E-04	Project Increase - Average 24- hour emission rate	No	
MSS64	MSS64	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	1.00E-04	Project Increase	No	
U-FUG	U_FUG	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
U-FUG	U_FUG	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
D-FUG	D_FUG	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No		Project Increase	No	
D-FUG	D_FUG	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No		Project Increase	No	
							<u> </u>				
							-				
	-										

Electronic Modeling Evaluation Workbook (EMEW)

Speciated Emissions

Date: June 2, 2020 Permit #: 9423

Speciated Emissions b	y Model ID							
CAS#	Chemical Species	Other Species	Short-Term ESL (μg/m³)	Long-Term ESL (μg/m³)	اح اح اد اد اد اد اد اد اد اد اد اد اد اد اد	ا اد اد اد ان ان ان ان ان ان ان ان ان ان ان ان ان	ا اد اد Modeled Project Wide Emission Sate [tpy]	ات المالي (الله) (الله) (الله) (الله)
74-85-1	ethylene		1400	34	275.00			
64742-05-8	petroleum extracts, light paraffinic distillate solvent		1000	100				
78-63-7	2.5-dimethyl-2.5-di(tert-butylperoxy)hexane		100	10				

Electronic Modeling Evaluation Workbook (EMEW)

Speciated Emissions

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

CAS#	C Modeled Project Wide Emission Rate [lb/hr]	A Modeled Site Wide Emission Rate [1b/hr]	A Modeled Project Wide Emission Rate [tpy]	C. Modeled Site Wide Emission Rate [tpy]	ດ Modeled Project Wide Emission ອ Rate [lb/hr] ໝ	Modeled Site Wide Emission Rate [Ib/hr]	Modeled Project Wide Emission Rate [tpy]	C Modeled Site Wide Emission Rate (Ftpy]	u Modeled Project Wide Emission 6 9 Rate [lb/hr]	່ມ Modeled Site Wide Emission Rate ນ G [lb/hr]	ັບ Modeled Project Wide Emission ວີ Rate [tpy]	ເປັ Modeled Site Wide Emission Rate ເຂື້ອ G [tpy]	ក ស Modeled Project Wide Emission 99 Rate [lb/hr] ព	ت اب Modeled Site Wide Emission Rate 99 [lb/hr] 8	ص Modeled Project Wide Emission 99 Rate [tpy]	
74-85-1	0.0364	_	_	_	0.0364	_	_	_	_	_	_	_	_		_	
64742-05-8									0.228		0.0153		1.16		0.169	
78-63-7																_

Electronic Modeling Evaluation Workbook (EMEW)

Speciated Emissions

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

CAS#	్ర మ Modeled Site Wide Emission Rate 99 [tpy] 8	ات ات Modeled Project Wide Emission 95 Rate [ib/hr] 4	D Modeled Site Wide Emission Rate [1b/hr]	ات ات Modeled Project Wide Emission 95 Rate [tpy]	Modeled Site Wide Emission Rate (1) (1)	ໄດ້ Modeled Project Wide Emission ເລື່ອ Rate [ib/hr]	U Modeled Site Wide Emission Rate	ات Modeled Project Wide Emission د Rate [tpy]	Modeled Site Wide Emission Rate [tpy]	NAT Modeled Project Wide Emission Strate [lb/hr]	Modeled Site Wide Emission Rate [Ib/hr]	Nodeled Project Wide Emission Rate [tpy]	Nodeled Site Wide Emission Rate [tpy]	א א Modeled Project Wide Emission א Rate [lb/hr] ש	NAT Modeled Site Wide Emission Rate [Ib/hr]	
74-85-1																
64742-05-8		0.138		0.00470		0.0134				0.167				0.167		
78-63-7																1

Electronic Modeling Evaluation Workbook (EMEW)

Speciated Emissions

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

CAS#	Nodeled Project Wide Emission Rate [tpy]	H Nodeled Site Wide Emission Rate (tpy]	ات الم Modeled Project Wide Emission ن Rate [lb/hr] 9	U Modeled Site Wide Emission Rate [lb/hr]	U Modeled Project Wide Emission B Rate [tpy]	Modeled Site Wide Emission Rate [tpy]	U Modeled Project Wide Emission 95 Rate [lb/hr]	Modeled Site Wide Emission Rate [lb/hr]	U Modeled Project Wide Emission S Rate [tpy]	D Modeled Site Wide Emission Rate 150 [tpy]	U Modeled Project Wide Emission 99 Rate [lb/hr]	D Modeled Site Wide Emission Rate 99 [lb/hr]	U Modeled Project Wide Emission 99 Rate [tpy]	ס ש Modeled Site Wide Emission Rate ש [tpy]	ס ש Modeled Project Wide Emission פ Rate [lb/hr]
74-85-1															
64742-05-8			3.14		0.262		0.100				2.20		0.167		2.20
78-63-7															

Electronic Modeling Evaluation Workbook (EMEW)

Speciated Emissions

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

CAS#	U Modeled Site Wide Emission Rate 99 [lb/hr]	ס Modeled Project Wide Emission Pate [tpy]	o Modeled Site Wide Emission Rate و [tpy]	U Modeled Project Wide Emission 9 Rate [lb/hr]	D Modeled Site Wide Emission Rate 99 [lb/hr]	U Modeled Project Wide Emission 9. Rate [tpy]	Modeled Site Wide Emission Rate (1) Modeled Site Wide Emission Rate (2) [tpy]	ר Modeled Project Wide Emission 19 12 Rate [lb/hr] 20	Modeled Site Wide Emission Rate [lb/hr]	Modeled Project Wide Emission Et Rate [tpy]	Modeled Site Wide Emission Rate [tpy]	اتا Modeled Project Wide Emission 8 Rate [lb/hr]	-H Modeled Site Wide Emission Rate	احال Modeled Project Wide Emission Segnate [tpy]	اح Modeled Site Wide Emission Rate 8 [tpy]	
74-85-1																1
64742-05-8		0.157		0.100				0.108		0.0505		0.0812				1
78-63-7		<u>'</u>														1

Electronic Modeling Evaluation Workbook (EMEW)

Speciated Emissions

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

CAS#	יוח Modeled Project Wide Emission ב ה ה ה ה	m Modeled Site Wide Emission Rate G [lb/hr]	m 'n Modeled Project Wide Emission C Rate [tpy]	m Modeled Site Wide Emission Rate G [tpy]	א א י ה Modeled Project Wide Emission ב Rate [ib/hr] ה	Modeled Site Wide Emission Rate [Ib/hr]	Modeled Project Wide Emission Rate [tpy]	H H G G [tpy] C D D D D D D D D D D D D D D D D D D	ات Modeled Project Wide Emission چ Rate [lb/hr]	D Modeled Site Wide Emission Rate	ປ Modeled Project Wide Emission ອື່ Rate [tpy]	Modeled Site Wide Emission Rate (1) Modeled Site Wide Emission Rate	S Modeled Project Wide Emission 9 Rate [lb/hr]	S Modeled Site Wide Emission Rate 9 [lb/hr]	S Modeled Project Wide Emission o Rate [tpy]	
74-85-1	0.0620	_	0.296	_	_	_		_	_	_	_				0.00357	
64742-05-8																
78-63-7					0.0278				0.0278		6.00E-04					

Electronic Modeling Evaluation Workbook (EMEW)

Speciated Emissions

Date: June 2, 2020 Permit #: 9423

Company Name: Equistar Chemicals, L.P.

CAS#	Modeled Site Wide Emission Rate [tpy]	ات Modeled Project Wide Emission S Rate [lb/hr]	Modeled Site Wide Emission Rate [1b/hr]	Modeled Project Wide Emission Rate [tpy]	Modeled Site Wide Emission Rate [tpy]	C Modeled Project Wide Emission C Rate [lb/hr]	C Modeled Site Wide Emission Rate C [Ib/hr]	C Modeled Project Wide Emission C Rate [tpy]	C Modeled Site Wide Emission Rate C [tpy]	רט Modeled Project Wide Emission ב Rate [lb/hr]	רט Modeled Site Wide Emission Rate G [Ib/hr]	רס Modeled Project Wide Emission רד ב Rate [tpy]	U Modeled Site Wide Emission Rate C [tpy]	
74-85-1						0.259		1.13		0.0236		0.103		
64742-05-8		0.0729		0.00160										
78-63-7														

Date: June 2, 2020 Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P. **Combined Emissions**

5011		Modeling	5 "	Modeled Averaging	0: 1.17	5 . 6		Source	Modeled Emission
EPN	Model ID	Scenario	Pollutant	Time	Standard Type	Review Context	Intermittent	Туре	Rate [lb/hr]
FL-3706 CT-6901	FL_3706M CT 6901A	ALL ALL	Health Effects Pollutant Health Effects Pollutant	1-hr 1-hr	Health Effects Health Effects	Project Wide Project Wide	No No	Flare Point	
CT-6901	CT 6901B	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Point	
F-5102	F 5102	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Point	0.01
F-5102	F 5102	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Point	0.01
F-5102	F 5102	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Point	0.01
S-5203D	S_5203D	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Point	0.08
S-5203D	S_5203D	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Point	0.04
S-5203D	S_5203D	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Point	0.04
F-6801	F_6801	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Point	0.00
F-6801	F_6801	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Point	0.00
F-6801	F_6801	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Point	0.00
F-4801	F_4801	ALL ALL	PM10	24-hr	NAAQS	SIL analysis	No	Point	0.00
F-4801 F-4801	F_4801 F_4801	ALL	PM2.5 PM2.5	24-hr Annual	NAAQS NAAQS	SIL analysis	No No	Point Point	0.00
PP-SAMPL	PPSAMPLC	ALL	PM2.5 PM10	24-hr	NAAQS	SIL analysis SIL analysis	No	Point	0.00
PP-SAMPL	PPSAMPLC	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Point	0.00
PP-SAMPL	PPSAMPLC	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Point	0.00
PP-SAMPL	PPSAMPLD	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Point	0.01
PP-SAMPL	PPSAMPLD	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Point	0.00
PP-SAMPL	PPSAMPLD	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Point	0.00
PP-SAMPL	PPSAMPLE	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Point	0.01
PP-SAMPL	PPSAMPLE	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Point	0.00
PP-SAMPL	PPSAMPLE	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Point	0.00
D-3106	D_3106	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-3106	D_3106	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
D-3106B	D_3106B	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-3106B	D_3106B	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
D-3504	D_3504	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Volume	0.01
D-3504	D_3504	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-3504	D_3504	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
D-3113 TK-2527A	D_3113 TK 2527A	ALL ALL	Health Effects Pollutant Health Effects Pollutant	1-hr 1-hr	Health Effects Health Effects	Project Wide Project Wide	No No	Volume Volume	
TK-2527B	TK 2527A	ALL	Health Effects Pollutant Health Effects Pollutant	1-nr 1-hr	Health Effects Health Effects	Project Wide Project Wide	No	Volume	
D-4106	D 4106	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide Project Wide	No	Volume	
D-4106	D_4106	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
D-4504	D 4504	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Volume	0.01
D-4504	D 4504	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-6106A	D 6106A	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-6106A	D 6106A	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
D-6106B	D 6106B	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-6106B	D 6106B	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
D-6504	D_6504	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Volume	0.02
D-6504	D_6504	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Volume	0.00
D-6504	D_6504	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Volume	0.00
D-6504	D_6504	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-6113	D_6113	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-6113	D_6113	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
T-880	T_880	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
E-FUG	E_FUG	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
E-FUG	E_FUG M 42591	ALL ALL	Health Effects Pollutant	Annual 24-hr	Health Effects	Project Wide SIL analysis	No No	Volume Volume	0.01
M-42591 M-42591	M 42591	ALL	PM10 PM2.5	24-nr 24-hr	NAAQS NAAQS	SIL analysis	No	Volume	0.01
M-42591	M 42591	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Volume	0.01
F-583	F 583	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Volume	0.01
F-583	F 583	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Volume	0.01
F-583	F 583	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Volume	0.01
F-5303	F 5303	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Volume	0.00
TK-5104C	TK_5104C	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-6850	D_6850	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-6850	D_6850	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
MSS43	MSS43	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
D-4706	D_4706	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
D-4706	D_4706	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
TK-884	TK_884	ALL	H2SO4	1-hr	State Property Line	Project Wide	No	Volume	0.00
TK-884	TK_884	ALL	H2SO4	24-hr	State Property Line	Project Wide	No	Volume	0.00
TK-895	TK_895	ALL	H2SO4	1-hr	State Property Line	Project Wide	No	Volume	0.00
TK-895	TK_895	ALL	H2SO4	24-hr	State Property Line	Project Wide	No	Volume	0.00
MSS61	MSS61	ALL ALL	PM10 PM2.5	24-hr 24-hr	NAAQS NAAQS	SIL analysis	No No	Volume Volume	0.00
MSS61 MSS61	MSS61 MSS61	ALL	PM2.5 PM2.5	Z4-nr Annual	NAAQS NAAQS	SIL analysis SIL analysis	No No	Volume	0.00
MSS62	MSS62	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Volume	0.00
MSS62	MSS62	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Volume	0.00
MSS62	MSS62	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Volume	0.00
MSS63	MSS63	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Volume	0.00
MSS63	MSS63	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Volume	0.00
MSS63	MSS63	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Volume	0.00
MSS64	MSS64	ALL	PM10	24-hr	NAAQS	SIL analysis	No	Volume	0.00
MSS64	MSS64	ALL	PM2.5	24-hr	NAAQS	SIL analysis	No	Volume	0.00
MSS64	MSS64	ALL	PM2.5	Annual	NAAQS	SIL analysis	No	Volume	0.00
U-FUG	U_FUG	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
U-FUG	U_FUG	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
D-FUG	D FIIO	ALL	Health Effects Pollutant	1-hr	Health Effects	Project Wide	No	Volume	
	D_FUG								
D-FUG	D_FUG D_FUG	ALL	Health Effects Pollutant	Annual	Health Effects	Project Wide	No	Volume	
				Annual	Health Effects	Project Wide	No	Volume	
				Annual	Health Effects	Project Wide	No	Volume	
				Annual	Health Effects	Project Wide	No	Volume	

Electronic Modeling Evaluation Workbook (EMEW) Modeling Scenarios

Date: June 2, 2020 Permit #: 9423 Company Name: Equistar Chemicals, L.P.

Modeling Scenario	Scenario Description:
ALL	All sources assumed to be operating simultaneously.

Date: June 2, 2020 Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P. **NAAQS-SPL Modeling Results**

Table 1. Project-Related Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (μg/m³)	De Minimis (μg/m³)
SO ₂	1-hr		14.3
H ₂ SO ₄	1-hr	0.0133	1
H ₂ SO ₄	24-hr	0.00150	0.3
H₂S	1-hr		2.16 (If property is residential, recreational, business, or commercial)
H₂S	1-hr		3.24 (If property is not residential, recreational, business, or commercial)

Table 2. Site-wide Modeling Results for State Property Line

Pollutant	Averaging Time	GLCmax (μg/m³)	Standard (µg/m³)
SO ₂	1-hr		715
H ₂ SO ₄	1-hr		50
H ₂ SO ₄	24-hr		15
H₂S	1-hr		108 (If property is residential, recreational, business, or commercial)
H₂S	1-hr		162 (If property is not residential, recreational, business, or commercial)

Table 3. Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)
SO ₂	1-hr		7.8*
SO ₂	3-hr		25
SO ₂	24-hr		5
SO ₂	Annual		1
PM ₁₀	24-hr	0.795	5
NO ₂	1-hr		7.5**
NO ₂	Annual		1
CO	1-hr		2000
CO	8-hr		500

Additional information for the De Minimis values listed above can be found at: https://www.epa.gov/sites/production/files/2015-07/documents/appwso2.pdf

^{*} https://www.tceq.texas.gov/assets/public/permitting/air/memos/guidance_1hr_no2naaqs.pdf

Date: June 2, 2020

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P.

NAAQS-SPL Modeling Results

Table 4. PM_{2.5} Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (μg/m³)	Secondary PM _{2.5} Contribution (μg/m³)	Total Conc. = Secondary PM _{2.5} + GLCmax (μg/m³)	De Minimis (μg/m³)
PM _{2.5}	24-hr	0.292	0	0.29215	1.2*
PM _{2.5}	Annual	0.0487	0	0.04869	0.2*
A LUCY LANGE CO. C.	d D Maria I I				

Additional information for the De Minimis values listed above can be found at: https://www.tceq.texas.gov/permitting/air/modeling/epa-mod-guidance.html

Electronic Modeling Evaluation Workbook (EMEW)
Health Effect Modeling Results

Date: June 2, 2020 Permit #: 9423

alty.																						
Modeled Healf	ith Effect Result	s (MERA Guidance):		Step 3	Step 4: Production		Step 4: MSS		Step 5: MSS Only	Step 5: Hours of Exces	edance			Step 6	Step 7: Site Wide				Step 7: Hours of Exce	dance		
		Averaging Time	ESL (µg/m²)	10% ESL Step 3 Modeled GLCmax [µg/m³]	25 % ESL Step 4 Production GLCmax since most recent site wide modeling [µg/m³]	10% ESL Step 4 Production Project Only GLCmax [µg/m³]	50% ESL Step 4 MSS GLCmax since most recent site wide modeling [µg/m²]	25% ESL Step 4 MSS Project Only GLCmax [µg/m³]	Full ESL Step 5 GLCmax [µg/m²]	1X ESL GLCmax Step 5 MSS Hours of Exceedance	2X ESL GLCmax Step 5 MSS Hours of Exceedance	4X ESL GLCmax Step 5 MSS Hours of Exceedance	10X ESL GLCmax Step 5 MSS Hours or Exceedance	Was Step 6 relied on to fall out of the	Site Wide GLCmax	Site Wide GLCni [µg/m²]	GLCni Location Easting: X [m]	GLCni Location Northing: Y [m]	1X ESL GLCn/ Hours of Exceedance	2X ESL GLCmax Hours of Exceedance	4X ESL GLCmax Hours of Exceedance	10X ESL GLCmax Hours of Exceedance
	74-85-1	1-hr	1400	29.01																		
	74-85-1	Annual	34	1.47																		
petroleum extracts, light paraffinic distillate solvent	64742-05-8	1-hr	1000											Yes (Verify with Permit Reviewer)								
petroleum extracts, light paraffinic	64742-05-8	Annual	100	0.20																		
2,5-dimethyl-2,5-di(tert-	78-63-7	1-hr	100	1.69																		
buty/peroxy/hexane																						├
butylperoxy/hexane	78-63-7	Annual	10	0.00																		
		_																				
																						-
				l										1								+
				l										1								+
				l										1								+
				l										1								+
																						\vdash
				l	1				l	l												
				l	1				l	l												
					-				 	-												
				 																		
			· ·																			
														1								

Electronic Modeling Evaluation Workbook (EMEW)

Company Name: Equistar Chemicals, L.P.

Modeling File Names

Date: June 2, 2020

Facility:

Model File Base Name	Pollutant	Averaging Time	File Extensions	Additional File Description
Project	All	All	*.pip	Downwash file
HARRIS_HOULCH2014_2018M	All	All	*.pfl, *.sfc	Surface and upper air met file
HARRIS_HOULCH16M	All	All	*.pfl, *.sfc	Surface and upper air met file
AERMAP	All	All	*.map, *.mot, *.rcf, *.srf, *.out	AERMAP files
AERSURFACE	All	All	*.dat, *.out	AERSURFACE files
Project_5yrs_PM10	PM10	24-hr	*.dta, *.grf, *.lst, *.sum	de minimis
Project_5yrs_PM25	PM2.5	24-hr	*.dta, *.grf, *.lst, *.sum	de minimis
Project_5yrs_PM25ANN	PM2.5	Annual	*.dta, *.grf, *.lst, *.sum	de minimis
Project_2016_ETHYL	Ethylene	1-hr	*.dta, *.grf, *.lst, *.sum	project-wide
Project 2016 ETHYLA	Ethylene	Annual	*.dta, *.grf, *.lst, *.sum	project-wide
Project 2016 H2SO4	H2SO4	1-hr, 24-hr	*.dta, *.grf, *.lst, *.sum	project-wide
Project_2016_MINOIL	Mineral Oil	1-hr	*.dta, *.grf, *.lst, *.sum	project-wide
Project 2016 MINOILA	Mineral Oil	Annual	*.dta, *.grf, *.lst, *.sum	project-wide
Project_2016_PEROX	Peroxide	1-hr	*.dta, *.grf, *.lst, *.sum	project-wide
Project_2016_PEROXA	Peroxide	Annual	*.dta, *.grf, *.lst, *.sum	project-wide
Floject_2010_FEROXA	Feloxide	Ailiuai	.uta, .gri, .ist, .surii	project-wide
			_	
	+			

Please note that Section 11 of the application and certain parts of the Electronic Modeling Evaluation Workbook (EMEW) have all been classified as Confidential.

Any request for portions of this application that are marked as confidential must be submitted in writing, pursuant to the Public Information Act, to the Texas Commission on Environmental Quality, Public Information Coordinator, MC-197, P.O. Box 13087, Austin, Texas 78711-3087