

Equistar Chemicals, LP

1515 Miller Cut-Off Road P.O. Drawer D Deer Park, TX 77536

7018 0360 0001 0579 6805 CERTIFIED MAIL – RETURN RECEIPT REQUESTED

November 23, 2020

Texas Commission on Environmental Quality Air Permits Initial Review Team (APIRT) MC 161 P.O. Box 13087 Austin, TX 78711-3087

Re: Equistar Chemicals, LP – La Porte Chemical Complex

TCEQ Air Quality Permits No. 18978
Permit Amendment Application
La Porte, Texas Harris County
TCEQ Account ID No. HG-0770-G; RN100210319; CN600124705

Equistar Chemicals, LP (Equistar) operates an Olefins Unit (QE1) under Texas Commission on Environmental Quality (TCEQ) Air Quality Permit No. 18978. Equistar requests the amendment of this permit to authorize additional acetylene flaring and updates to the ARU Flare (QE3050B, QE3050BMAINT) calculations.

Required TCEQ Form PI-1 General Application and relevant documents (emissions details, process description, flow diagram, BACT analysis, area map, plot plan, etc.) are included in this application submittal to assist in TCEQ's review. The amendment application fees of \$3,000.00 have been paid electronically and the receipt is included in the application. CONFIDENTIAL information is clearly labeled within the application.

Equistar is requesting expedited processing of this application and TCEQ Form APD-EXP and Form APD-APS are included in this package for your reference.

If you have any questions regarding this application submittal, please contact Talia J Sanchez at (713) 767-1028 or <u>Talia.Sanchez@LYB.com</u>.

Sincerely,

—Docusigned by: Heath McCartney

53EE9E73C689429... Heath McCartney

HSE Supervisor – La Porte Complex

Enclosure

cc: TCEQ Region 12

Air Section Manager Harris County Public Health and Environmental Service

Director

5425 Polk Ave, Suite H 101 S. Richey St Suite G Houston, TX 77023-1452 Pasadena, TX 77506

7018 0360 0001 0579 6812 7018 0360 0001 0579 6829

Form APD-EXP Expedited Permitting Request

I. Contact Information					
Company or Other Legal Customer Name: Equistar Chemicals, L.P.					
Customer Reference Number (CN): CN600124705					
Regulated Entity Number (RN): RN100210319					
Company Official or Technical Contact Name: Talia J Sanchez					
Phone Number: 713-767-1028					
Email: Talia.Sanchez@lyondellbasell.com					
II. Project Information					
Facility Type: Industrial Polyethylene Manufacturing					
Permit Number: 18978					
Project Number: TBA					
III. Economic Justification					
The purpose of the application associated with this request to expedite will benefit the economy of this state or an area of this state.					
IV. Delinquent Fees and Penalties					
Applications will not be expedited if any delinquent fees and/or penalties are owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at: www.tceq.texas.gov/agency/delin/index.html .					
V. Signature					
The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. As the applicant, I commit to fulfilling all expectations of the expedited permitting program and application requirements promptly. Failure to meet any expectation or requirement may cause my application to be removed from the expedited permitting program and possibly voided at the discretion of the TCEQ Executive Director. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.					
Name: Talia J Sanchez DocuSigned by:					
Signature: Talia I Sanduz					
Date: Nov 23, 2020 15:12:19 CST					

Reset Form

Texas Commission on Environmental Quality Form APD-APS Air Permitting Surcharge Payment

I. Contact Information
Company or Other Legal Customer Name: Equistar Chemicals LP.
Customer Reference Number (CN): CN600124705
Regulated Entity Number (RN): RN100210319
Company Official or Technical Contact Information:
(□ Mr. □ Mrs. ⊠ Ms. □ Other:
Name: Talia J Sanchez
Title: Environmental Engineer
Mailing Address: P.O. Drawer D
City: Deer Park
State: Texas
ZIP Code: 77536-1900
Telephone Number: 713-767-1028
E-mail Address: <u>Talia.Sanchez@lyondellbasell.com</u>
II. Project Information
Facility Name: Equistar Chemicals La Porte Complex
Permit Number: 18978
Project Number: TBA
III. Surcharge Payment
Project Type: NSR case-by-case permit
Fee Amount: \$10,000
Check, Money Order, Transaction Number, and/or ePay Voucher Number: <i>(below)</i>
Electronic Fund Transfer (EFT) #6900627079 (Invoice No. 111720V32007)
Paid Online: ☐ YES ☒ NO
Company Name on Check: LyondellBasell

NEW SOURCE REVIEW PERMIT AMENDMENT APPLICATION

Permit No. 18978/PSDTX752M5/N162

Submitted by:

Equistar Chemicals, L.P. - La Porte

TCEQ Account Number HG-0770-G

Submitted to:

Texas Commission on Environmental Quality (TCEQ)
Air Permits Initial Review Team (APIRT)
Air Permits Division, MC-161
P.O. Box 13087
Austin, Texas 78711-3087

November 2020

TABLE OF CONTENTS

SECTIO	N 1 Introduction	1-1
1.1	Introduction	1-1
1.2	Facility Information	
1.3	Prevention of Significant Deterioration (PSD) and Non-attainment Review	
	(NNSR)	1-3
1.4	Application Contents	1-3
SECTIO	N 2 Process Description	2-1
2.1	Process Description	2-1
SECTIO	N 3 Emission Calculation Methodology	3-1
3.1	ARU Flare	3-1
3.2	DMF Loading Fugitives	3-1
SECTIO	N 4 Lowest Achievable Emission Rate	4-1
4.1	ARU Flare	4-1
4.2	DMF Sump Filling and Truck Loading	4-2
SECTIO	N 5 Best Available Control Technology	5-1
5.1	Hydrogen Flare	5-1
5.2	Fugitives	5-2
5.3	Cracking Furnaces	5-2
SECTIO	N 6 Regulatory Applicability	6-1
6.1	General Application Requirements - §116.311	6-1
6.2	General Application Requirements - §116.111	6-2
LIST OF	TABLES	
Table 1-1	PBR/SPs Incorporation by Consolidation	1-2
Table 1-2	Proposed Changes to MAERT	1-2
Table 1-3	Federal NSR Applicability Analysis Summary	1-5
	Hydrogen Flare Tier I BACT Requirements	
Table 5-2	Fugitive Tier I BACT Requirements	5-2

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES	
Figure 1-1 Area Map	1-6
Figure 1-2 Plot Plan	1-7
Figure 2-1 ARU Flare Process Flow Diagram (CONFIDENTIAL)	2-2
LIST OF APPENDICES	
Appendix A Administrative Considerations and Application Forms	
Appendix B TCEQ NNSR Tables	
Appendix C RBLC Database	
Appendix D Emission Calculations (CONFIDENTIAL)	

SECTION 1 INTRODUCTION

1.1 Introduction

Equistar Chemicals, L.P., La Porte Complex (Equistar) operates an Olefins Unit (QE-1 Unit) under Texas Commission on Environmental Quality (TCEQ) Air Quality Permit No. 18978/PSD-TX-752M5/N162, and various Permits by Rule (PBR).

The Olefins unit operates an Acetylene Recovery Unit (ARU) that purifies Acetylene to be sold as a product. The customer who used to buy the product permanently shut down. The acetylene product is currently used as fuel to the furnaces; however if the fuel gas system needs maintenance, the acetylene will need to be flared. With this permit amendment, Equistar requests to authorize the additional acetylene from maintenance activities and scenarios when acetylene flow is not routed as fuel to the furnaces. Moreover, Equistar is making the following updates:

- > Update the ARU flare destruction removal efficiency (DRE) from 99.5% to 99% for straight chained organic compounds consisting of three carbon compounds or less, and 98% for other compounds in accordance with TCEQ guidance.
- > Update the NOx and CO emission factors from the TCEQ 2010 flare study for the ARU flare.
- > Update pilot flow rate based on historical data to reflect actual operations.
- Add N,N-Dimethylformamide (DMF) sump filling and truck loading emissions to the ARU flare (EPN: QE3050B) and associated uncaptured loading emissions emitted as fugitives (EPN: QELOAD_ARU).
- Incorporate by consolidation the following Permits by Rule (PBR) and Standard Permit (SP):
 - SP Registration No. 158696;
 - SP Registration No. 159015; and
 - PBR Registration No. 162490.

Table 1-1 below contains a summary for the requested PBR/SPs.

Table 1-2 provides a summary of all changes requested in this permit amendment application that affect the Maximum Allowable Emission Rate Table (MAERT).

Table 1-1 PBR/SPs Incorporation by Consolidation

Permit	Due is at Description	roject Description Pollutants Emissi		sions	Comments
Number	Project Description	Pollutants	lb/hr	tpy	Comments
158696	Flare Gas Recovery System for the Main Flare	VOC	<0.01	0.01	The fugitive emissions (under EPN: QEFUG) and analyzer emissions (EPN: QEANALYZ5) from this SP will be incorporated into the permit 18978 via this amendment action.
159015	Change of operation of Hydrogen Flare	NOx	-2.00	-1.20	The flare emissions (under EPN: QEH2FLARE) from this SP will be
		СО	34.68	20.81	incorporated into the permit 18978 via this amendment action.
162490	Increase in Acetylene Concentration to the Pyrolysis Furnaces	VOC	2.15	4.99	The furnace emissions (under EPNs: QE1001B through QE1011B) and fugitive emissions (under EPN: QEFUG) from this PBR will be incorporated into the permit 18978 via this amendment action.

Table 1-2 Proposed Changes to MAERT

EDN	Daganintian	Pollutant	Current N	MAERT	Proposed MAERT		
EPN	Description	Pollutant	lb/hr	TPY	lb/hr	TPY	
QE1001B	Furnace 1	VOC	0.70	3.00	0.30	0.75	
QE1002B	Furnace 2	VOC	0.70	3.00	0.30	0.75	
QE1003B	Furnace 3	VOC	0.70	3.00	0.30	0.75	
QE1004B	Furnace 4	VOC	0.70	3.00	0.30	0.75	
QE1005B	Furnace 5	VOC	0.70	3.00	0.30	0.75	
QE1006B	Furnace 6	VOC	0.70	3.00	0.30	0.75	
QE1007B	Furnace 7	VOC	0.70	3.00	0.30	0.75	
QE1008B	Furnace 8	VOC	0.70	3.00	0.30	0.75	
QE1009B	Furnace 9	VOC	0.83	3.63	0.30	0.75	
QE1010B	Furnace 10	VOC	0.60	2.41	0.61	1.50	
QE1011B	Furnace 11	VOC	0.60	2.41	0.61	1.50	
		CO (PSD)	21.00	8.98	69.61	22.72	
QE3050B	ARU Flare	NO_{X} (PSD)	4.04	1.73	14.11	4.50	
QE3030B	ARU Flate	SO_2	0.10	0.10	0.10	0.10	
		VOC	15.02	1.38	51.64	4.34	
		CO	50.65	1.27	88.42	49.60	
QE3050MAINT	ARU Flare	NO_X	9.74	0.24	17.35	10.12	
QESUSUMAINI	Maintenance	SO_2	0.10	0.10	0.10	0.10	
		VOC	78.63	1.97	106.06	44.82	

EPN	Description	Pollutant	Current N	MAERT	Proposed MAERT		
EFN	Description	Fonutant	lb/hr	TPY	lb/hr	TPY	
QELOAD_ARU	DMF Loading Fugitives	VOC	-	-	0.01	< 0.01	
	Hydrogen Flare	CO	59.16	35.50	93.84	56.31	
OFHISEI ARE		NO_X	34.87	20.92	32.87	19.72	
QEH2FLARE		VOC	5.99	3.59	5.99	3.59	
		SO_2	0.01	0.01	0.01	0.01	
QEANALYZ5	Main Flare Analyzer	VOC	-	-	< 0.01	< 0.01	
QEFUG	Process Fugitives	VOC	19.67	86.07	19.76	86.44	

1.2 Facility Information

The project described in this application will authorize emissions increases for the ARU Flare (EPNs: QE3050B, QE3050MAINT) at the Equistar La Porte Facility. The Equistar La Porte Facility is located in Miller Cut-Off Road, La Porte, TX. This unit operates under the Operating Permit No. O2223. The La Porte Facility is located in Harris County, which is currently classified as a serious nonattainment National Ambient Air Quality Standard (NAAQS) area for the 8-hour NAAQS for ozone. VOCs and NO_X are considered to be precursors to ozone.

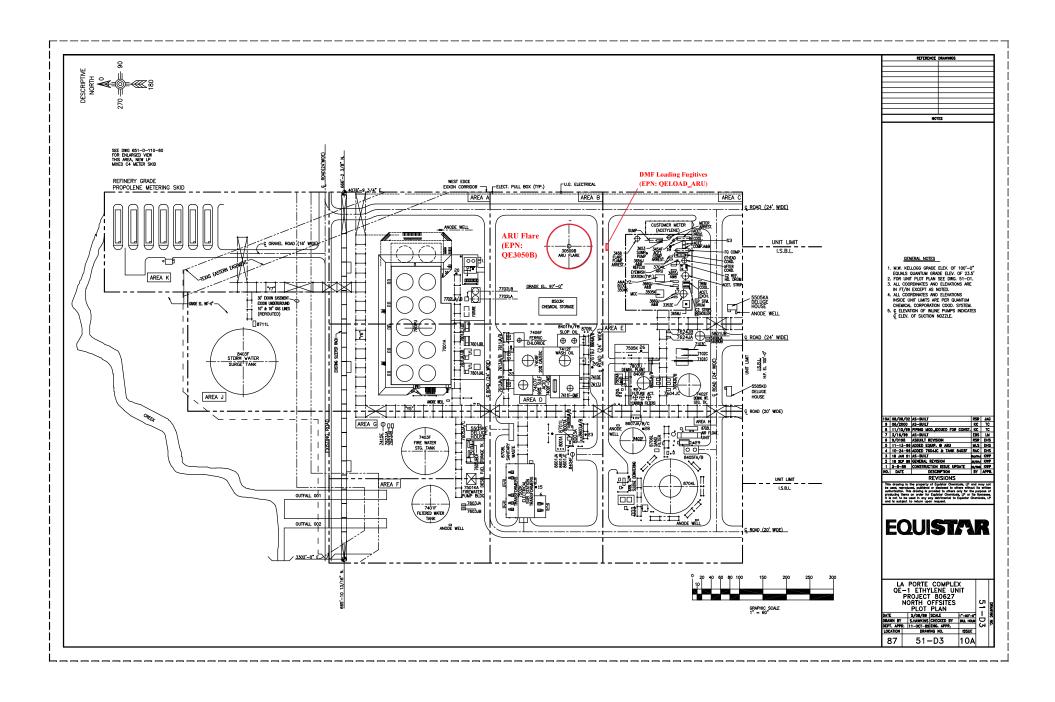
Figure 1-1 shows the location of the La Porte Facility on the Area Map. A detailed plot plan of the Facility showing the location of the ARU flare at the site is provided in Figure 1-2.

1.3 Prevention of Significant Deterioration (PSD) and Non-attainment Review (NNSR)

Table 1-3 presents the federal NNSR and PSD applicability analysis associated with the proposed amendment. The project increases from the ARU flare (EPNs: QE3050B, QE3050MAINT) are summarized in Table 1-3 and compared to the relevant PSD and NNSR applicability thresholds. As demonstrated in these tables, the changes requested in the permit amendment triggers federal NNSR permitting requirements for NOx and VOC emissions from this project. Supporting TCEQ NNSR tables are provided in Appendix B.

1.4 Application Contents

Key components of this application are organized as follows:


- An area map and a plot plan are provided at the end of Section 1.
- A process description and process flow diagram are included in Section 2.

- > Emissions calculations methodologies are included in Section 3.
- ➤ Best Available Control Technology (BACT) is addressed in Section 4.
- > Regulatory applicability and compliance strategies are addressed in Section 5.
- > Appendix A comprises administrative consideration and completed TCEQ NSR workbook general application forms.
- > Appendix B comprises applicable TCEQ NNSR Tables.
- > Appendix C comprises RBLC search results.
- > Appendix D comprises emission rate calculations for the proposed amendment.

EQUISTAR CHEMICALS
LAPORTE COMPLEX
OLEFINS UNIT PERMIT AMENDMENT APPLICATION # 18978
FEDERAL NSR APPLICABILITY ANALYSIS SUMMARY
Table 1-3

					voc			NOx			со			S02	
		Federal NSR		Baseline	Proposed	Project Increase									
EPN	Facility Description	Classification	Permit No.	tpy	tpy	фу									
QE3050B	ARU Flare	Modified	18978	0.48	4.34	3.86	1.73	4.50	2.77	8.98	22.72	13.74	0.04	0.10	0.06
QE3050MA I NT	ARU Flare Maintenance	Modified	18978	0.23	44.82	44.59	0.02	10.12	10.10	0.12	49.60	49.48	-	0.10	0.10
QELOAD_ARU	DMF Loading Fugitives	New	18978	-	< 0.01	< 0.01		-	-		-	-	-	-	-
	Project Increase (tpy)					48.46			12.87			63.22			0.16
	Major Source Thresho	old (tpy)				50			100.00			100			100
	Existing Major Source	(Yes/No)				Yes			Yes			Yes			Yes
	Project Major Source By Its	self (Yes/No)				No			No			No			No
	Netting Threshold (tons)				5			5			100			40
	Netting Required (Yes/No)					Yes			Yes			No			No
	Contemporaneous Period Change (tons)					223.82			102.81			NA NA			NA NA
Significant Modification Threshold (tons)					25			25			100			40	
	Federal Review Required	d (Yes/No)				Yes			Yes			No			No

SECTION 2 PROCESS DESCRIPTION

2.1 Process Description

The Olefins unit receives hydrocarbon feedstock where it is fed into pyrolysis furnaces. The pyrolysis furnaces, which are fired on natural gas and/or process gas, heat the feedstock to a high temperature where it cracks into alkenes or olefins.

The process effluent from the furnaces is quenched and scrubbed with water. Pyrolysis gasoline is removed as a product during water scrubbing. The quenched gases are compressed, dried, and cooled prior to beginning a series of purification/distillation steps. A hydrogen rich stream from the final chilling step is further purified in a pressure swing absorber to produce hydrogen product.

The purification section consists of a demethanizer, deethanizer, acetylene recovery unit (ARU), depropanizer, methyl acetylene propadiene conversion unit (MAPD), debutanizer, C3 splitter, and C2 splitter. This equipment separates the process gas stream into acetylene, ethylene, propylene, mixed C4s, and pyrolysis gasoline (pygas) products. Ethane and propane recovered during distillation and separation are recycled as feedstock into the pyrolysis furnaces.

N,N-Dimethylformamide (DMF) is used as an absorbent to remove acetylene from the C2 splitter feed gas stream. The recovered acetylene is added to the fuel gas of the pyrolysis furnaces. During routine maintenance operations at the ARU unit, wash water containing DMF is sent to the DMF sump. The material in the sump is loaded into tank trucks to be used as feed for another process unit. Emissions from DMF sump filling and truck loading operations will be sent to the ARU flare (EPN: QE3050B) for control. Uncaptured emissions from truck loading will be emitted as fugitive emissions (EPN: QELOAD ARU).

The ARU flare system is designed to collect hydrocarbon vapors and liquids that are released from the Olefins Unit and route them for safe, efficient disposal by oxidizing them in the ARU flare stack (EPNs: QE3050B, QE3050MAINT).

Figure 2-1 ARU Flare Process Flow Diagram (CONFIDENTIAL)

SECTION 3 EMISSION CALCULATION METHODOLOGY

This section describes the methodology used to calculate Potential-to-Emit (PTE) emissions from the sources affected by this project. Detailed emission calculations are included in Appendix D of this application.

3.1 ARU Flare

The Olefins Unit ARU flare (EPNs: QE3050B, QE3050MAINT) is used to control routine, maintenance, startup, and shutdown (MSS) and emergency upset emissions associated with Olefins Unit operations. VOC emissions from the ARU flare are estimated based on a VOC DRE of 99% for straight chained organic compounds consisting of three carbon compounds or less, and 98% for other compounds. NOx and CO emissions are calculated based on the heat input of the material being combusted and emission factors from Texas Commission on Environmental Quality's (TCEQs) 2010 Flare Study Final Report, August 2011. Emissions of SO₂ and VOC from the pilot gas is calculated based on AP-42 Section 1.4 emission factors for natural gas combustion. The maximum heat input used to determine hourly and annual emission limits for the flare is determined based on the volumetric flow of waste gas and pilot gas and the lower heating value (LHV) of the gas being combusted.

3.2 DMF Loading Fugitives

Uncaptured emission from DMF truck loading operations (EPN: QELOAD_ARU) are estimated based on AP-42 Section 5.2, *Transportation And Marketing Of Petroleum Liquids, June 2008*. Annual emissions are based on a bulk liquid loading temperature, total annual loading rate, and a capture efficiency of 98.7%. Maximum hourly emissions are based on maximum liquid loading temperature and maximum hourly loading rate, and a capture efficiency of 98.7%. Captured vapors sent to the flare are included in the ARU flare emission calculations.

SECTION 4 LOWEST ACHIEVABLE EMISSION RATE

Per 30 TAC §116.150(e)(1), a project subject to NNSR must use control technology that achieves Lowest Achievable Emission Rate (LAER). LAER for the planned project applies to new and modified sources of NOx and VOC emissions. The definition of LAER per 30 TAC §116.12(17) is the most stringent emission limitation derived from either of the following:

- > The most stringent emission limitation contained in the implementation plan of any State for such class or category of source; or
- > The most stringent emission limitation achieved in practice for such class or category of source.

The LAER review takes technical feasibility into account but not economic reasonableness, which is considered in a BACT analysis. LAER costs are considered only to the degree that they reflect unusual circumstances, which differentiate the cost of control for that source from control costs for the rest of the industry.

The La Porte Complex is located in Harris County which is a part of the HGB area designated as serious nonattainment for ozone. NOx and VOC are the regulated precursors to ozone. NOx and VOC emissions from this project exceed the NNSR major modification netting threshold of 5 tpy and contemporaneous net increase of 25 tpy. Therefore, the proposed project is subject to a LAER analysis for NOx and VOC emissions from the ARU flare and VOC emissions from the DMF loading fugitives. The main aspect considered when determining LAER was the most stringent emission limitation that is achieved in practice by a specific class or category of facilities as found in a search of the RACT/BACT/LAER Clearinghouse (RBLC) database.

For the proposed project, the LAER analysis presented below follows this methodology to determine LAER limits for each source. Tables summarizing the results of RBLC database are included in Appendix C.

4.1 ARU Flare

Flares are routinely approved by TCEQ as LAER for controlling routine and MSS activities from chemical manufacturing facilities.

Nitrogen Oxide Emissions

The existing ARU flare is designed to be smokeless and meets all applicable requirements of 40 CFR §60.18 and §63.11 during all maintenance startup and shutdown operating scenarios. The flare is equipped with a pilot flame monitoring system to ensure that the flame is lit at all times and that gas is directed at the flare. The flare is also equipped with a monitoring system to measure and record the flow and composition of the waste gas directed to the flare.

The RBLC search did not identify any more stringent controls. The proposed design and operating practices satisfy LAER for NOx emissions and are consistent with recent TCEQ LAER determinations for chemical plant flares.

Volatile Organic Compounds

The acetylene stream from this project will be preferentially routed to the pyrolysis furnaces as fuel rather than to the ARU flare. The furnaces achieve 99.98% control of VOC in the fuel streams. The acetylene stream will be routed to the ARU flare during times the furnaces are not able to burn acetylene as fuel. The time of flaring will be limited to the maximum extent possible.

Furthermore, maintenance, startup, and shutdown (MSS) emissions from the proposed project will be routed to the ARU flare. The RBLC search did not identify any more stringent controls than flares for MSS activities. In addition, these MSS activities have intermittent frequency. Therefore, a flare is considered LAER for control.

4.2 DMF Sump Filling and Truck Loading

The RBLC search indicates that materials with a vapor pressure greater than 0.5 psia will use trucks and railcars certified as vapor tight and be routed in a closed vent system to a control device. Equistar proposes to use trucks that are leak tested based on EPA Standards (NSPS XX) for the loading operations and control captured vapors by the ARU flare. The DMF sump will be filled in an enclosure achieving a 100% collection rate and captured vapors will also be controlled by the ARU flare. The ARU flare achieves 98% DRE for VOCs. This is considered LAER for the filling and loading operations.

SECTION 5 BEST AVAILABLE CONTROL TECHNOLOGY

As stated in Section §116.111(a)(2)(C), new or modified facilities must utilize best available control technology (BACT), with consideration given to the technical practicability and economic reasonableness of reducing or eliminating the emissions from the facility. Each facility is evaluated on a case-by-case basis. Engineering principles and agency experience, concerning the practicality and reasonableness of an emission reduction option, are used in this determination.

As described in their guidance document entitled Evaluating Best Available Control Technology (BACT) in Air Permit Applications (April 2001), the TCEQ BACT evaluation is conducted using a "tiered" analysis approach. The evaluation begins at the first tier and continues sequentially through subsequent tiers only if necessary, as determined by the evaluation process described in the TCEQ document. In each tier, BACT is evaluated on a case-by-case basis.

In the first tier, controls accepted as BACT in a recent permit review for the same process in the same industry are approved as BACT in a current review if no new technical developments have been made that would justify additional controls as economically or technically reasonable. According to the TCEQ, the second tier takes into account controls that have been accepted as BACT in recent permits for similar facilities in a different process or industry. The third tier of the TCEQ BACT approach consists of a detailed technical and economic analysis of all control options available for the process under review.

The proposed amendment will incorporate multiple Standard Permits and a PBR. The following summarizes the BACT analysis for the proposed changes associated with these Standard Permits and PBR.

5.1 Hydrogen Flare

Tier 1 BACT for flares is to meet the requirements of 40 CFR §60.18 regarding flare tip velocity and minimum net heating value of gas combusted. A DRE of 99% will be achieved with up to 3 carbon compounds and a 98% DRE will be achieved with up to four or greater carbon compounds when the requirement of 40 CFR §60.18 are met.

The existing plant flare is designed to be smokeless and meets all applicable requirements of 40 CFR §60.18. The flare is equipped with a pilot flame monitoring system to ensure that the flame is lit at all times and that gas is directed at the flare. The flare is also equipped with

a monitoring system to measure and record the flow and composition of the waste gas directed to the flare.

Table 5-1 Hydrogen Flare Tier I BACT Requirements

Year	Source Type	Pollutant	Minimum Acceptable Control	Control Efficiency or Details
10/1/2018	Control:	NOx	Provide proposal and justification. Flow monitor will be required. Composition or BTU analyzer may be required.	Emissions are estimated based on firing rate and AP-42 factors. Flow monitor and composition analyzers are in place.
10/1/2010	flare	СО	Provide proposal and justification. Flow monitor will be required. Composition or BTU analyzer may be required.	Emissions are estimated based on firing rate and AP-42 factors. Flow monitor and composition analyzers are in place.

5.2 Fugitives

Equistar uncontrolled VOC emissions are > 25 tpy; therefore Tier 1 BACT analysis for fugitives requires to follow the 28 VHP program.

Table 5-2 Fugitive Tier I BACT Requirements

Year	Source Type	Pollutant	Minimum Acceptable Control	Control Efficiency or Details
10/1/2018	Fugitives: piping and equipment leak	VOC	Provide details about applicable option: 1. Uncontrolled VOC emissions < 10 tpy - no control required 2. 10 tpy < uncontrolled VOC emissions < 25 tpy - 28M LDAR program. 75% credit. 3. Uncontrolled VOC emissions > 25 tpy - 28VHP LDAR program. 97% credit for valves, 85% for pumps and compressors. 4. VOC vapor pressure < 0.002 psia - no inspection required, no fugitive emissions expected.	28 VHP LDAR program is followed.

5.3 Cracking Furnaces

The cracking furnaces will emit VOC emissions. There is no TCEQ guidance for BACT for VOC emissions from furnaces. A search of the RBLC on EPA's website indicated good combustion practices are the appropriate control technology for VOC. Equistar will utilize

good combustion practices and combust natural gas, fuel gas, and/or hydrogen streams, which demonstrates BACT for VOC.

SECTION 6 REGULATORY APPLICABILITY

Pursuant to TCEQ 30 TAC §116.111, Equistar will meet all rules and regulations of the TCEQ and the intent of the TCAA for the emission sources and activities addressed in this permit amendment application, as follows:

- ➤ §116.111(a)(1) A completed Form PI-1 has been signed by an authorized representative of Equistar and is included in Appendix A.
- \gt §116.111(a)(2)(A) through (L) These items are addressed individually below.
- ➤ §116.111(b) Equistar will comply with applicable 30 TAC 39 and 30 TAC 55 public notice and public participation requirements for this permit amendment application.

6.1 General Application Requirements - §116.311

<u>30 TAC 311(a) – Permit Renewal Application:</u> This application is not a renewal application.

<u>30 TAC 311(a)(1) – Dockside vessel Emissions:</u> The unit complies with all rules and regulations of the commission.

30 TAC 311(a)(2) – Operating in Accordance with Existing Permit: This unit is being operated in accordance with all the requirements and conditions of the existing permit.

30 TAC 311(a)(3) – New Source Performance Standards (NSPS): Equistar will comply with all the requirements of any applicable NSPS as listed under Title 40 Code of Federal Regulations (CFR) Part 60. The Title V permit will provide relevant NSPS applicability for the Olefins Unit. Please refer to the Title V permit for any NSPS applicability requirements.

30 TAC 311(a)(4) – National Emissions Standards for Hazardous Air Pollutants (NESHAP): Equistar will comply with all the requirements of any applicable emission standard for hazardous air pollutants as listed under Title 40 CFR Part 61. The Title V permit will provide relevant NESHAP applicability for the Olefins Unit. Please refer to the Title V permit for any NESHAP applicability requirements.

30 TAC 311(a)(5) – Maximum Achievable Control Technology Organic NESHAPs (MACT): Equistar will comply with all the requirements of any applicable MACT standard as listed under 40 CFR Part 63. The Title V permit will provide relevant MACT Organic NESHAPs applicability for the Olefins Unit. Please refer to the Title V permit for any MACT applicability requirements.

30 TAC 311(a)(6) – Regulation Governing Constructed or Reconstructed Major Sources: This provision does not apply to the proposed facilities under consideration in this permit application.

30 TAC 311(b) – Compliance with Federal or State Air Quality Control Requirements

<u>30 TAC 311(b)(1) – Additional Information:</u> Equistar will provide additional information about the emissions from the facility and their impact on their surrounding area at the request of the TCEQ.

<u>30 TAC 311(c) – Compliance History:</u> Equistar is an existing site greater than 5-years old. Equistar requests that TCEQ compile the history of the site.

6.2 General Application Requirements - §116.111

The emissions associated with the proposed Olefins Unit project will comply with all applicable air quality rules and regulations and with the intent of the TCAA, including protection of the health and the physical property of people, as required by \$116.111(a)(2)(A)(i). Following is a summary of rules and regulations as they apply to the proposed project:

<u>30 TAC 101 - General Rules</u>: The facility will be operated in accordance with the General Rules relating to circumvention, nuisance, traffic hazard, notification requirements for major upset, notification requirements for unplanned maintenance, sampling, sampling ports, emission inventory requirements, sampling procedures and terminology, compliance with Environmental Protection Agency (EPA) Standards, emissions fees, and all other applicable General Rules.

<u>30 TAC 111 - Visible Emissions and Particulate Matter</u>: Equistar will comply with all applicable requirements under this chapter.

<u>30 TAC 112 - Sulfur Compounds</u>: Equistar will comply with all applicable requirements under this chapter.

<u>30 TAC 113 - Toxic Materials:</u> TCEQ has incorporated MACT standards (40 CFR 63) into Chapter 113 by reference. The proposed facility will comply with all applicable provisions of Chapter 113 concerning control, recordkeeping, reporting, and monitoring requirements.

<u>30 TAC 114 - Motor Vehicles</u>: This provision of the rule controls the emissions from motor vehicles and does not apply to the facilities under consideration in this permit application.

<u>30 TAC 115 - Volatile Organic Compounds</u>: The proposed facility is located in Harris County and is regulated by the following Rules that are applicable to this permit application:

Subchapter B Division 1 - Storage of VOC:

Equistar will comply with all the applicable control, monitoring, inspection, testing, and recordkeeping requirement listed in this subchapter.

Subchapter C Division 1 – Loading and Unloading of VOC:

Equistar will comply with all the applicable control, monitoring, and inspection requirement listed in this subchapter.

<u>Subchapter D Division 3 - Fugitive Emission Control in Petrochemical Process in Ozone</u> Nonattainment Areas:

Equistar will use TCEQ's 28VHP Leak Detection and Repair (LDAR) Program to comply with the requirements of Regulation V Subchapter D Division 3 for fugitive components for Harris County for all unit components in VOC service, and will comply with the monitoring and inspection requirements in this division.

<u>30 TAC 116 - Permits for New Construction or Modification</u>: Equistar is complying with the requirements of Chapter 116 by submitting this permit application and as outlined below for each of the following sections:

Rule 116.111(a)(2)(A) Protection of public health and welfare

As outlined below, the emissions from Equistar will comply with all air quality rules and regulations and with the intent of the TCAA, including protection of the health and physical property of the people.

Rule 116.111(a)(2)(B) Measurement of Emissions

The proposed facility will have provisions for measuring the emission of significant air contaminants as determined by the Executive Director.

Rule 116.111(a)(2)(C) Best Available Control Technology (BACT)

Section 4 of this application presents a discussion of BACT for the modified facilities associated with this application.

Rule 116.111(a)(2)(D) Federal New Source Performance Standards (NSPS)

Equistar will comply with all applicable 40 CFR Part 60 controls, recordkeeping, reporting, and monitoring requirements.

Rule 116.111(a)(2)(E) National Emission Standards for HAPs (NESHAP)

Equistar will comply with all applicable 40 CFR Part 61 controls, recordkeeping, reporting, and monitoring requirements.

Rule 116.111(a)(2)(F) Maximum Achievable Control Technology (MACT)

Equistar will comply with all applicable 40 CFR Part 63 controls, recordkeeping, reporting, and monitoring requirements.

Rule 116.111(a)(2)(G) Performance Demonstration

The proposed facilities are expected to perform as represented in this application.

Rule 116.111(a)(2)(H) Nonattainment Review

Non-attainment review has been completed and is triggered. See Non-attainment New Source Review in Section 1.3 for details.

Rule 116.111(a)(2)(I) Prevention of Significant Deterioration (PSD) review

The PSD regulations define a "major modification" as a physical change or a change in the method of operation of a major stationary source that would result in a contemporaneous significant net emissions increase in the emissions of any regulated pollutant. Emission increases represented in this application do not meet the definition of a major modification as shown in Section 1.3.

Rule 116.111(a)(2)(J) Air Dispersion Modeling

Air dispersion modeling has been performed to demonstrate compliance with ambient air contaminant standards. The air quality analysis and Electronic Modeling Evaluation Workbook (EMEW) workbook are submitted concurrently with this application.

Rule 116.111(a)(2)(K) Hazardous Air Pollutants

Equistar will comply with all applicable requirements under Subchapter E of this chapter.

Rule 116. 111(a)(2)(L) Mass Cap and Trade Allowances

Equistar, if necessary, will obtain allowances in order to be in compliance with the regulations under this chapter.

<u>30 TAC 117 - Nitrogen Compounds</u> Equistar will comply with all applicable subchapters and divisions contained in Chapter 117.

<u>30 TAC 118 - Air Pollution Episodes</u> The facility will be operated in compliance with the rules relating to generalized a localized air pollution episodes. An Emissions Reduction Plan is maintained as required by §118.5.

<u>30 TAC 122 - Federal Operating Permits</u> The La Porte Facility operates under Federal Operating Permit No. O2223. The Title V Permit will be revised to reference the changes in applicable requirements resulting from the amendment to the NSR permit and additional equipment if necessary.

APPENDIX A ADMINISTRATIVE CONSIDERATIONS AND APPLICATION FORMS

Permit Fee Calculation

The permit amendment application fee is calculated according to 30 TAC §116.141(a), Determination of Fees, which specifies that the fee for an amendment is based on the capital cost of the project. The permit application fee is calculated and summarized on the TCEQ NSR Workbook estimated capital cost and fee verification form. The permit amendment fee of \$3,000 is provided in this application.

Compliance History

Equistar is an existing site greater than 5-years old. Equistar requests that TCEQ compile the history of the site.

Administratively Application Forms

The following table is included in this appendix:

- > NSR Workbook General Information Table (previously form PI-1)
- Copy of Permit Application Fee Receipt
- ➤ Table 2 Material Balance (Confidential)

The completed TCEQ NSR workbook general application forms and Electronic Modeling Evaluation Workbook (EMEW) are submitted electronically through email to the Air Permits Initial Review Team.

Date	e:	_11/23/2020	
Pe	rmit #: _	18978	
Company: _	_Equista	ar Chemicals, L.P	

I. Applicant Information									
I acknowledge that I am submitting an authorized TCEQ application workbook and any									
necessary attachments. Except for inputting the requested data and adjusting row height and									
column width, I have not change		· · ·	_	I agree					
· · · · · · · · · · · · · · · · · · ·			merdanig bat						
not limited to changing formulas, formatting, content, or protections.									
A. Company information	A. Company Information								
Company or Legal Name:									
Permits are issued to either the fa									
List the legal name of the compan			ing for the permit	We will verify					
the legal name with the Texas Sec	cretary of State a	t (512) 463-5555 or at:							
https://www.sos.state.tx.us									
Texas Secretary of State Charter/l	Registration								
Number (if given):									
B. Company Official Contact Info	ormation: must r	not be a consultant							
Prefix (Mr., Ms., Dr., etc.):	Mr.								
First Name:	Stephen G								
Last Name:	Goff								
Title:	Complex Manag	ger							
Mailing Address:	P.O. Drawer D								
Address Line 2:									
City:	Deer Park								
State:	TX								
ZIP Code:	77536-1900								
Telephone Number:	713-336-5475								
Fax Number:	713-209-1440								
Email Address:	Stephen.Goff@	yondellbasell.com							
C. Technical Contact Information	n: This person m	ust have the authority to make bi	nding agreement	s and					
representations on behalf of the a	oplicant and may	be a consultant. Additional tech	inical contact(s)	can be					
provided in a cover letter.									
Prefix (Mr., Ms., Dr., etc.):	Ms.								
First Name:	Talia								
Last Name:	Sanchez								
Title:	Environmental E	Engineer							
Company or Legal Name:	Equistar Chemic	cals LP.							
Mailing Address:	P.O. Drawer D								
Address Line 2:									
City:	Deer Park								
State:	TX								
ZIP Code:	77536-1900								
Telephone Number:	713-767-1028								
Fax Number:	713-209-1440								
Email Address:	Talia.Sanchez@	lyondellbasell.com							
D. Assigned Numbers									
The CN and RN below are assigned when a Core Data Form is initially submitted to the Central Registry. The RN is									
also assigned if the agency has conducted an investigation or if the agency has issued an enforcement action. If									
these numbers have not yet been assigned, leave these questions blank and include a Core Data Form with your									
application submittal. See Section	-								
Enter the CN. The CN is a unique									
body, association, individual, or ot	her entity that ow	ns, operates, is responsible for,	CN600124705						
or is affiliated with a regulated entity.									

Date	:	11/23/2020
Per	mit #: _	18978
Company: _	Equista	ar Chemicals, L.P

Enter the RN. The RN is a unique agency assigned number given to each person,
organization, place, or thing that is of environmental interest to us and where
regulated activities will occur. The RN replaces existing air account numbers. The
RN for portable units is assigned to the unit itself, and that same RN should be
used when applying for authorization at a different location.

RN100210319

II. Delinquent Fees and Penalties

Does the applicant have unpaid delinquent fees and/or penalties owed to the TCEQ? This form will not be processed until all delinquent fees and/or penalties owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ are paid in accordance with the Delinquent Fee and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at:

No		

https://www.tceq.texas.gov/agency/financial/fees/delin

III. Permit Information

A. Permit and Action Type (multiple may be selected, leave no blanks)

Additional information regarding the different NSR authorizations can be found at: https://www.tceq.texas.gov/permitting/air/guidance/authorize.html

Select from the drop-down the type of action being requested for each permit type. If that permit type does not apply, you MUST select "Not applicable".

Provide all assigned permit numbers relevant for the project. Leave blank if the permit number has not yet been assigned.

Permit Type	Action Type Requested	Permit Number (if assigned)
	(do not leave blank)	
Minor NSR (can be a Title V major source): Not applicable, Initial, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Relocation/Alteration, Change of Location, Alteration, Extension to Start of Construction	Amendment	18978
Special Permit: Not applicable, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
De Minimis: <i>Not applicable</i> , <i>Initial</i>	Not applicable	
Flexible: Not applicable, Initial, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
PSD: Not applicable, Initial, Major Modification	Not applicable	
Nonattainment: <i>Not applicable, Initial, Major</i> <i>Modification</i>	Major Modification	N162
HAP Major Source [FCAA § 112(g)]: <i>Not applicable, Initial, Major Modification</i>	Not applicable	
PAL: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration	Not applicable	
GHG PSD: Not applicable, Initial, Major Modification, Voluntary Update	Not applicable	

Date	:	11/23/2020	
Per	mit #: _	18978	
Company: _	Equista	ar Chemicals, L.F	

B. MSS Activities		
How are/will MSS activities for sources associated This permit		
with this project be authorized?		
O O continue NOD Descrite		
C. Consolidating NSR Permits		No
Will this permit be consolidated into another NSR permit with this a	ction?	No
		I.
Will NSR permits be consolidated into this permit with this action?		No
D. Incorporation of Standard Permits, Standard Exemptions, a	nd/or Permits By Rule (PRR)	
To ensure protectiveness, previously issued authorizations (standa	<u> </u>	or PBRs)
including those for MSS, are incorporated into a permit either by co		
and/or amendment, consolidation (in some cases) may be voluntar		
regarding incorporation can be found in 30 TAC § 116.116(d)(2), 30) TAC § 116.615(3) and in this me	emo:
https://www.tceq.texas.gov/assets/public/permitting/air/memos/pbr	spc06.pdf	
Are there any standard permits, standard exemptions, or PBRs to	No	
be incorporated by reference?		
Are there any PBR, standard exemptions, or standard permits		
associated to be incorporated by consolidation? Note: Emission		
calculations, a BACT analysis, and an impacts analysis must be	Yes	
attached to this application at the time of submittal for any		
authorization to be incorporated by consolidation.		
If yes, list any PBR, standard exemptions, or standard permits that	SP 158696, SP 159015, PBR 16	2490
need to be consolidated:	O1 130030, O1 133013, 1 BIX 10	2430
If yes, are emission calculations, BACT analysis, and an impacts		
analysis included for each authorization to be consolidated? If any	Yes	
required information is not provided, the authorization will be		
incorporated by reference.		
E. Associated Federal Operating Permits Is this facility located at a site required to obtain a site operating p	ermit (SOP) or general	
operating permit (GOP)?	omme (oor) or goneral	Yes
Is a SOP or GOP review pending for this source, area, or site?		Yes

Date:		11/23/2020_	
Perr	nit #: _	18978_	
Company: _E	Equista	ar Chemica <mark>l</mark> s	, L.P

permit number has been assigned yet, enter "TBD":

A. Location	ation and General Information			
County: Enter the county where the facility is				
physically located.	Harris			
TCEQ Region	Pagin 12			
	Region 12			
County attainment status as of Sept. 23, 2019	Serious Ozone nonattainment			
Street Address:	1515 Miller Cut-Off Road			
City: If the address is not located in a city, then enter the city or town closest to the facility, even if it is not in the same county as the facility.	La Porte			
ZIP Code: Include the ZIP Code of the physical facility site, not the ZIP Code of the applicant's mailing address.	77571-9810			
Site Location Description: If there is no street address, provide written driving directions to the site. Identify the location by distance and direction from well-known landmarks such as major highway intersections.				
Use USGS maps, county maps prepared by the Te		oftware		
application such as Google Earth to find the latitude Latitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Latitude is the angular distance of a location north of the equator and will always be between 25 and 37	29:42:36			
degrees north (N) in Texas. Longitude (in degrees, minutes, and nearest				
second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Longitude is the angular distance of a location west of the prime meridian and will always be between 93 and 107 degrees west (W) in Texas.	-95:04:17			
Is this a project for a lead smelter, concrete crushir management facility?	ng facility, and/or a hazardous waste	No		
B. General Information				
Site Name:	Equistar Chemicals La Porte Complex			
Area Name: Must indicate the general type of operation, process, equipment or facility. Include numerical designations, if appropriate. Examples are Sulfuric Acid Plant and No. 5 Steam Boiler. Vague names such as Chemical Plant are not acceptable.	Equistar Chemicals, LP, QE1 Unit			
Are there any schools located within 3,000 feet of the site boundary?	No			
C. Portable Facility				
Permanent or portable facility?	Permanent			
of manorit of portable facility:				
D. Industry Type				

Date	:	_11/23/2	.020	
Per	mit #: _	18	978	
Company: _	Equista	ar Chem	nicals, L.	P

No

Principal Company Product/Busine	ess: Organic Chemical Manufacturing	
A list of SIC codes can be found a	t:	
https://www.naics.com/sic-codes-in	<u>ndustry-drilldown/</u>	
Principal SIC code:	2869	
	ween NAICS and SIC Codes are available at:	
https://www.census.gov/eos/www/		
Principal NAICS code:	325199	
E. State Senator and Representa		
·	note, the website is not compatible to Internet Explorer):	
https://wrm.capitol.texas.gov/		
State Senator:	Larry Taylor	
District:	11	
State Representative:	Mary Ann Perez	
District:	144	
	V. Project Information	
A. Description		
Provide a brief description of the	Equistar is requesting to authorize the additional acetylene fi	
project that is requested. (Limited	maintenance activities to the ARU flare and update the NOx factors based on the TCEQ 2010 flare study in accordance v	
to 500 characters).	Equistar is also updating the ARU flare DRE from 99.5% to 9	•
	increasing the pilot gas flow, and adding N,N-Dimethylforma	
	Ifilling and truck loading emissions.	inide (Divir) sump
B. Project Timing	milina and truck loading emissions.	
	many projects before beginning construction. Construction is	broadly interpreted
	ice or site preparation. Enter the date as "Month Date, Year"	
, 3	,	, , ,
Projected Start of Construction:	December 1, 2021	
Projected Start of Operation:	December 1, 2021	
C. Enforcement Projects		
	or related to, an agency investigation, notice of violation, or	NI -
enforcement action?		No
D. Operating Schedule		
Will sources in this project be auth	orized to operate 8760 hours per year?	Yes
	VI. Application Materials	
	truction plans and operation procedures contained in the peri	nit application shall
be conditions upon which the perm		
A. Confidential Application Mate		
Is confidential information submitte		Yes
	arked "CONFIDENTIAL" in large red letters?	Yes
•	disclose any information related to manufacturing processes	
	related to secret or proprietary processes or methods of mar	
	in the public file. All confidential information should be separa	
	parate file. Additional information regarding confidential inform	nation can be found
at:		
https://www.tcea.tevas.gov/permitt	ung/aur/contidential html	

Version 4.0 Page 5

B. Is the Core Data Form (Form 10400) attached?

Date	e:	11/23/2020 <u> </u>	
Pe	rmit #: _	18978	
Company: _	Equista	r Chemicals,	L.P.

https://www.tceq.texas.gov/assets/public/permitting/centralregistry/10400.docx		
C. Is a current area map attached?	Yes	
Is the area map a current map with a true north arrow, an accurate scale, the entire plant property, the location of the property relative to prominent geographical features including, but not limited to, highways, roads, streams, and significant landmarks such as buildings, residences, schools, parks, hospitals, day care centers, and churches?	Yes	
Does the map show a 3,000-foot radius from the property boundary?	Yes	
D. Is a plot plan attached?	Yes	
Does your plot plan clearly show a north arrow, an accurate scale, all property lines, all emission points, buildings, tanks, process vessels, other process equipment, and two bench mark locations?	Yes	
Does your plot plan identify all emission points on the affected property, including all emission points authorized by other air authorizations, construction permits, PBRs, special permits, and standard permits?	Yes	
Did you include a table of emission points indicating the authorization type and authorization identifier, such as a permit number, registration number, or rule citation under which each emission point is currently authorized?	Yes	
E. Is a process flow diagram attached?	Yes	
Is the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw materials to be used in the process; all major processing steps and major equipment items; individual emission points associated with each process step; the location and identification of all emission abatement devices; and the location and identification of all waste streams (including wastewater streams that may have associated air emissions)?	Yes	
F. Is a process description attached?	Yes	
Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere?	Yes	
Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced?	Yes	
G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can be emailed with the submittal of this application workbook.	Yes	
Are emission rates and associated calculations for planned MSS facilities and related activities attached?	Yes	
H. Is a material balance (Table 2, Form 10155) attached?	Yes	
Table 2 (Form 10155), entitled Material Balance: A material balance representation may be required for all applications to confirm technical emissions information. Typically this is required for refining and chemical manufacturing processes involving reactions, separations, and blending. It may also be requested by the permit reviewer for other applications. Table 2 should represent the total material balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions.		
I. Is a list of MSS activities attached?	Yes	
Are the MSS activities listed and discussed separately, each complete with the authorization mechanism or emission rates, frequency, duration, and supporting information if authorized by this permit?	Yes	
J. Is a discussion of state regulatory requirements attached, addressing 30 TAC Chapters 101, 111, 112, 113, 115, and 117?	Yes	
For all applicable chapters, does the discussion include how the facility will comply with the requirements of the chapter?	Yes	
For all not applicable chapters, does the discussion include why the chapter is not applicable?	Yes	

DocuSign Envelope ID: DEDDC1DA-14A5-40F9-A381-91C6B9543C51

Texas Commission on Environmental Quality Form PI-1 General Application General

Date:	11/23/2020	
Permit	#: <u>18978</u>	
Company: _Equistar Chemicals, L.P		

K. Are all other required tables, calculations, and descriptions attached?

VII. Signature

The owner or operator of the facility must apply for authority to construct. The appropriate company official (owner, plant manager, president, vice president, or environmental director) must sign all copies of the application. The applicant's consultant cannot sign the application. **Important Note: Signatures must be original in ink, not reproduced by photocopy, fax, or other means, and must be received before any permit is issued.**

The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the project for which application is made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter 382; the Texas Clean Air Act (TCAA); the air quality rules of the Texas Commission on Environmental Quality; or any local governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I understand my signature indicates that this application meets all applicable nonattainment, prevention of significant deterioration, or major source of hazardous air pollutant permitting requirements. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.

Name:	Stephen G. Goff	
	DocuSigned by:	
Signature:	Stephen G. Goff	
Original signature is required.		
Date:	Nov 19, 2020 09:53:31 CST	

APPENDIX B TCEQ NNSR TABLES

TCEQ NNSR Tables

The following forms and tables are included in this appendix in the following order:

- > TCEQ Table 1F
- > TCEQ Table 2Fs
- > TCEQ Table 3Fs

		TABLE	1F						
TCEQ									
ICEQ									
Permit No.: 18978 Application Submittal Date: 12/10/2019									
Company: Equistar Chemicals LP	•								
RN: 100210319	Facility Loca	ation: 1515	Miller Cut Of	f Rd					
City: La Porte	County: Harris								
Permit Unit I.D.:	t I.D.: Permit Name:								
Permit Activity: New Source X Modification									
Project or Process Description: Main Flare Amendment									
Complete for all Pollutants with a Project Emission				POLLU	TANTS				
Increase.	Ozone		- co	PM ₁₀	PM _{2.5}	NOx	SO ₂	Other ¹	
moreuse.	VOC	NO _x		10	12.5	NOX	002	Outer	
Nonattainment?	No	No	No	No	No	No	No	No	
PSD?	No	No	No	No	No	No	No	No	
Existing site PTE (tpy)?	>50	>50	>100	<100	<100	>100	<100	-	
Proposed project emission increases (tpy from 2F) ²	48.46	12.87	63.22	-	-	12.87	0.16	-	
Is the existing site a major source?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	NA	
If not, is the project a major source by itself?	No	No	No	No	No	No	No	NA	
If site is major, is project increase significant?	No	Yes	No	No	No	No	No	NA	
If netting required, estimated start of construction?				12/1/	2021				
Five years prior to start of construction			12/1/2016	3		COI	ntemporane	ous	
Estimated start of operation			12/1/2021	L			period		
Net contemporaneous change, including proposed	223.82	102.81	NA NA	NA.	NA.	NA.	NA.	NA.	
project, from Table 3F. (tpy)	223.02	102.81	INA	I IVA	l INA	INA	INA	INA	
Major NSR Applicable?	No	Yes	No	No	No	No	No	No	
Signature			Title			Date			

¹ Other PSD pollutants. [Pb, H2S, TRS, H2SO4, Fluoride excluding HF, etc.]

The representations made above and on the accompanying tables are true and correct to the best of my knowledge.

² Sum of proposed emissions minus baseline emissions, increases only.

Pollutant ¹ :	VOC	Permit No.: 18978
Baseline Period:	2015-2016	

						Α	В				
	Affected or Modified Facilities ²			Permit	Actual Emissions ³	Baseline Emissions ⁴		_ I Actual I	Difference (B-A) ⁶	Correction 7	Project
	FIN	EPN	Facility Name	No.	(tons/yr)	(tons/yr)	(tons/yr)	Emissions (tons/yr)	(tons/yr)	(tons/yr)	Increase* (tons/yr)
1	QE3050B	QE3050B	ARU Flare	18978	0.15	0.48	4.34	-	3.86	-	3.86
2	QE3050MAINT	QE3050MAINT	ARU Flare Maintenance	18978	0.10	0.23	44.82	=	44.59	-	44.59
3	QELOAD_ARU	QELOAD_ARU	DMF Loading Fugitives	18978	-	-	< 0.01	-	< 0.01	-	< 0.01
	Page Subtotal 9:										
	Page Subtotal ⁹ : Project Total:										

Notes:

- 1 Individual Table 2F's should be used to summarize the project emission increase for each criteria pollutant
- 2 Emission Point Number as designated in NSR Permit or Emissions Inventory.
- 3 All records and calculations for these values must be available upon request.
- 4 Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.
- 5 If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement
- 6 Proposed Emissions (column B) minus Baseline Emissions (column A).
- 7 Correction made to emission increase for what portion could have been accommodated during the baseline period.
- 8 Obtained by subtracting the correction from the difference.
- 9 Sum all values for this page.

Pollutant:	VOC	Line	1, 2	Type ¹⁰	Baseline adjustment

Explanation: The baseline actual average emissions for the ARU flare (EPN: QE3050B) and ARU flare maintenance (EPN: QE3050MAINT) have been updated with the destruction removal efficiency (DRE) from 99.5% to 99% for straight chained organic compounds consisting of three carbon compounds or less, and 98% for other compounds in accordance with TCEQ guidance.

Notes:

10. Type of note. Generally would be baseline adjustment, basis for projected actual, or basis for correction (what could have been accommodated).

Pollutant1:	NOx	Permit No.: 18978
Baseline Period:	2012-2013	

						Α	В				
	Affected or Modified Facilities ²			Permit	Actual Emissions ³	Baseline Emissions ⁴	Proposed Emissions ⁵	Projected Actual	Difference (B-A) ⁶	Correction 7	Project Increase 8
	FIN	EPN	Facility Name	No.	(tons/yr)	(tons/yr)	(tons/yr)	Emissions (tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
1	QE3050B	QE3050B	ARU Flare	18978	1.49	1.73	4.50	=	2.77	=	2.77
2	QE3050MAINT	QE3050MAINT	ARU Flare Maintenance	18978	0.02	0.02	10.12	=	10.10	=	10.10
									F	Page Subtotal 9:	12.87
	Project Total:										

Notes:

- 1 Individual Table 2F's should be used to summarize the project emission increase for each criteria pollutant
- 2 Emission Point Number as designated in NSR Permit or Emissions Inventory.
- 3 All records and calculations for these values must be available upon request.
- 4 Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.
- 5 If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement
- 6 Proposed Emissions (column B) minus Baseline Emissions (column A).
- 7 Correction made to emission increase for what portion could have been accommodated during the baseline period.
- 8 Obtained by subtracting the correction from the difference.
- 9 Sum all values for this page.

Pollutant:	NOx	Line	1, 2	Type ¹⁰	Baseline adjustment	
Explanation:	The baseline actual ave	rage emissions for the	e ARU flare (EPN: QE3	050B) and ARU flare m	naintenance (EPN: QE3050MAINT) have been adjusted with updated NOx emi	ission factor
from the TCE	Q 2010 flare study.					

Notes:

10. Type of note. Generally would be baseline adjustment, basis for projected actual, or basis for correction (what could have been accommodated).

Pollutant1:	CO	Permit No.: 18978
Baseline Period:	2011-2012	

						Α	В				
	Affected or Modified Facilities ²				Permit Actual Emissions ³	Baseline Emissions ⁴	Proposed Emissions ⁵	_ I Actual	Difference (B-A) ⁶	Correction 7	Project Increase 8
	FIN	EPN	Facility Name	No.	(tons/yr)	(tons/yr)	(tons/yr)	Emissions (tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
1	QE3050B	QE3050B	ARU Flare	18978	6.96	8.98	22.72	-	13.74	-	13.74
2	QE3050MAINT	QE3050MAINT	ARU Flare Maintenance	18978	0.09	0.12	49.60	-	49.48	-	49.48
									F	Page Subtotal ⁹ :	63.22
	Project Total:										

Notes:

- 1 Individual Table 2F's should be used to summarize the project emission increase for each criteria pollutant
- 2 Emission Point Number as designated in NSR Permit or Emissions Inventory.
- 3 All records and calculations for these values must be available upon request.
- 4 Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.
- 5 If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement
- 6 Proposed Emissions (column B) minus Baseline Emissions (column A).
- 7 Correction made to emission increase for what portion could have been accommodated during the baseline period.
- 8 Obtained by subtracting the correction from the difference.
- 9 Sum all values for this page.

Pollutant:	CO	Line	1, 2	Type ¹⁰	Baseline adjustment	
Explanation: The	baseline actual a	average emissions for the	ARU flare (EPN: QE3	3050B) and ARU flare ma	intenance (EPN: QE3050MAINT) have	been adjusted with updated CO emission factor
from the TCEQ 20	010 flare study.					

Notes:

10. Type of note. Generally would be baseline adjustment, basis for projected actual, or basis for correction (what could have been accommodated).

Pollutant ¹ :	SO ₂	Permit No.: 18978
Baseline Period:	2013-2014	

	Affected or Modified Facilities ²			Permit	Actual Emissions ³	Baseline Emissions ⁴	Proposed Emissions ⁵	Projected Actual	Difference (B-A) ⁶	Correction 7	Project
	FIN	EPN	Facility Name	No.	(tons/yr)	(tons/yr)	(tons/yr)	Emissions (tons/yr)	(tons/yr)	(tons/yr)	Increase° (tons/yr)
1	QE3050B	QE3050B	ARU Flare	18978	0.04	0.04	0.10	-	0.06	-	0.06
2	QE3050MAINT	QE3050MAINT	ARU Flare Maintenance	18978	-	-	0.10	-	0.10	-	0.10
									F	Page Subtotal 9:	0.16
	Project Total:										

Notes:

- 1 Individual Table 2F's should be used to summarize the project emission increase for each criteria pollutant
- 2 Emission Point Number as designated in NSR Permit or Emissions Inventory.
- 3 All records and calculations for these values must be available upon request.
- 4 Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.
- 5 If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement
- 6 Proposed Emissions (column B) minus Baseline Emissions (column A).
- 7 Correction made to emission increase for what portion could have been accommodated during the baseline period.
- 8 Obtained by subtracting the correction from the difference.
- 9 Sum all values for this page.

Table 3F
Project Contemporaneous Changes ¹

 Company :
 Equistar Chemicals LP

 Permit Application No.:
 18978

 Criteria Pollutant:
 VOC

Baseline Creditable Proposed Difference Facility at Which Emission Change Occured 3 Federal NSR Baseline **Project Name or Activity** (tons/yr) Decrease or Project Date 2 Permit No. Project No. Emissions⁴ Emissions⁵ Classification Period (tons/yr) (tons/yr) (A-B)⁶ Increase 7 FIN EPN PBR 144475 - NSR AAV5312 AAV5312 262850 1 January 2017 Modified V5312 throughput increase 2015-2016 1.38 0.62 0.76 0.76 5040 Permit Amendment (2 flares -> 1; flare 114809 34.32 2 May 2017 LBFLARE9 LBFLARE9 Modified 252146 NA 34.32 _ water seal Permit Amendment (2 flares -> 1; flare 3 May 2017 IBWW LBWW 114809 252146 0.38 0.38 0.38 New NA water seal) SP 146820 - NSR Vinyl Acetate Monomers Storage Tank 4 June 2017 VAV573 VAV573 Modified 262850 2016-2017 1.13 1.42 -0.29 -0.29 PBR 138607 - NSR 5 September 2017 Q1INC Q1INC Modified 271610 Q1 Debottleneck 2015-2016 31.92 9.83 22.09 22.09 19109 PBR 138607 - NSR 6 September 2017 01F013249 Q1F01324⁹ Modified 271610 Q1 Debottleneck 2015-2016 7.86 0.38 7.48 19109 PBR 148085 - NSR 7 September 2017 QE8050B9 QE8050B⁹ Modified 273069 Recycle Lube Oil PBR 2014-2015 10.96 7.08 3.88 . 18978 PBR 148085 - NSR QEFUG QEFUG 273069 8 Modified Recycle Lube Oil PBR NA 0.01 0.01 September 2017 18978 PBR 150783 - NSR Installation of new diesel engine 9 March 2018 VAWWENG VAWWENG 282599 NA New -4751 (another EPN used for the engine) PBR 150783 - NSR 10 March 2018 WWPENG WWPENG New 282599 Installation VAM WW Engine NA 0.32 0.32 0.32 4751 PBR 151084 - NSR 11 March 2018 AATFFUG AATFFUG Modified 283424 Fugitives addition (various projects) 0.19 0.19 0.19 NA PBR 151084 - NSR 12 March 2018 AARTFUG AARTFUG Modified 283424 Fugitives addition (various projects) NA 0.01 -0.01 0.01 4751 PBR 151084 - NSR 13 March 2018 AABFUG AABFUG Modified 283424 Fugitives addition (various projects) NA 0.01 0.01 0.01 4751 PBR 151084 - NSR 14 March 2018 VAFUG VAFUG Modified 283424 Fugitives addition (various projects) NA 1.37 1.37 1.37 4751 PBR 151084 - NSR 15 March 2018 VATFFUG VATFFUG Modified 283424 0.19 0.19 Fugitives addition (various projects) NA 0.19 4751 PBR 151084 - NSR 16 March 2018 VARTFUG VARTFUG Modified 283424 Fugitives addition (various projects) NA 0.08 0.08 0.08 4751 PBR 151084 - NSR 17 March 2018 VABFUG VABFUG Modified 283424 Fugitives addition (various projects) 0.01 0.01 0.01 PBR 151085 - NSR 18 March 2018 Q1FUG Q1FUG Modified 283425 Addition of Fugitive Components NA 4.56 4.56 4.56 19019 PBR 151085 - NSR 19 March 2018 L3FUG L3FUG 283425 4.26 4.26 Modified Addition of Fugitive Components NA 4.26 -4477 AASCV5118 AASCV5118 SP 145060 - NSR 20 April 2018 AASCV5238 AASCV5238 Modified 283420 PCP replace 3 scrubbers 2007-2008 1.31 1.94 -0.63 -0.63 5040 AASCV5129 AASCV5129 PBR 151971 - NSR 21 June 2018 285878 QE1AIRCOMP QE1AIRCOMP New Installation of new diesel engine NA 0.29 0.29 0.29 18978 PBR 152573 - NSR 22 July 2018 VAV578SC/VAV579SC VAV578SC/VAV579SC Modified 287487 PCP replace 2 scrubbers 2013-2014 0.23 0.23 0.00 0.00 4751 PBR 152172 - NSR 23 July 2018 Modified 286432 O1 Peroxide Addition 2015-2016 9.37 0.38 8.99 8.99 01F013249 01F013249 19109 AASCV5251 AASCV5251 PBR 152453 - NSR 24 August 2018 AASCV5252 AASCV5252 Modified 287218 PCP replace 3 scrubbers 2012-2013 0.58 0.38 0.20 0.20 5040 ΔΔSCV5315 AASCV5315 SP 153017 - NSR 25 UTBLRG UTBLRG 288914 August 2018 Utilities burners NA New 5226 SP 153017 - NSR 26 August 2018 UTBLRH UTBLRH New 288914 Utilities burners NA PBR 152926 - NSR 27 August 2018 L3RT0 L3RT0 Modified 288557 AB3 high rates 2011-2012 11.69 8.65 3.04 3.04 4477

45.84

PAGE SUBTOTAL

Table 3F Project Contemporaneous Changes 1

Company: Equistar Chemicals LP Permit Application No.: 18978 Criteria Pollutant: voc

Baseline Creditable Proposed Difference Facility at Which Emission Change Occured 3 Federal NSR Baseline (tons/yr) Decrease or Project Date² Permit No. Project No. Project Name or Activity Emissions⁴ Emissions⁵ Classification Period (tons/yr) (tons/yr) (A-B)⁶ Increase 7 FIN EPN PBR 152926 - NSR 28 August 2018 L3V4351 L3V4351 Modified 288557 AB3 high rates 2011-2012 0.04 0.04 0.04 1177 PBR 152926 - NSR 29 August 2018 L3V4384 L3V4384 Modified 288557 AB3 high rates 2011-2012 0.04 _ 0.04 0.04 1177 PBR 152926 - NSR 30 August 2018 L3V4385 L3V4385 Modified 288557 AB3 high rates 2011-2012 0.04 0.04 0.04 4477 PBR 152926 - NSF 31 L3V4433 L3V4433 288557 AB3 high rates August 2018 Modified 2011-2012 0.04 0.04 0.04 4477 PBR 152926 - NSR 32 August 2018 L3V4429 L3V4429 Modified 288557 AB3 high rates 2011-2012 0.04 0.04 0.04 4477 PBR 152926 - NSR 33 August 2018 L3V4430 L3V4430 Modified 288557 AB3 high rates 2011-2012 0.04 0.04 0.04 4477 PBR 152926 - NSR 34 August 2018 L3V4431 L3V4431 Modified 288557 AB3 high rates 2011-2012 0.04 0.04 0.04 4477 PBR 152926 - NSR 35 L3V4432 L3V4432 2011-2012 August 2018 Modified 288557 AB3 high rates 0.04 0.04 0.04 4477 PBR 152926 - NSR 36 L3V2101 L3V2101 Modified 288557 AB3 high rates 2011-2012 0.05 0.01 0.04 0.04 August 2018 4477 PBR 153099 - NSR 37 August 2018 VAFLARE⁹ VAFLARE9 Modified 289191 V580 IFR -> flare 2014-2015 37.85 36.88 0.97 4751 PBR 153263 - NSF 38 September 2018 QEFUG QEFUG Modified 289692 0.10 0.10 Install off-gas piping and analyzer 0.10 18978 PBR 153263 - NSR 39 September 2018 0E3501K 0E3501K 289692 Install off-gas piping and analyzer NA 0.20 0.20 0.20 New 18978 PBR 152980 - NSR Wash Oil Injection and Isobutane 40 September 2018 QE6410F QE6410F Modified 288787 2007-2008 5.95 5.92 0.03 0.03 18978 cracking PBR 152980 - NSR Wash Oil Injection and Isobutane 41 September 2018 QE7412F QE7412F Modified 288787 2007-2008 0.08 0.02 0.06 0.06 18978 cracking PBR 152980 - NSR Wash Oil Injection and Isobutane 42 September 2018 QE2410F QE2410F Modified 288787 2007-2008 0.02 < 0.01 0.02 0.02 18978 cracking 43 October 2018 HSFLARE HSFLARE Shutdown 83822 292276 Flare decommissioned 2015-2016 3.49 -3.49 -3.49 Modified 44 October 2018 NSR 5040 302168 Acetic Acid Renewal-Amendment. 2009-2010 4.99 0.89 4.10 AAFLARE⁹ AAFLARE9 NSR 5040 45 October 2018 AAV5209 AAV5209 Modified 302168 Acetic Acid Renewal-Amendment. 2009-2010 0.44 0.32 0.12 0.12 PBR 154109 - NS 46 292258 October 2018 VAFLARE⁹ VAFLARE9 Modified B" RGC seal upgrade 2014-2015 38.07 36.88 1.19 -SP 153696 - NSR Route secondary distance pieces to 47 October 2018 L3FLARE9 L3FLARE9 Modified 291135 2008-2009 10.21 4.19 6.02 4477 SP 153696 - NSR Route secondary distance pieces to 48 October 2018 L3FUG L3FUG Modified 291135 NA 0.01 0.01 0.01 4477 flare SP 153696 - NSR Route secondary distance pieces to 49 October 2018 L3SIL0S L3SIL0S Modified 291135 2008-2009 38.02 5.93 32.09 32.09 4477 flare PBR 153800 - NSR QEFUG 291424 50 November 2018 QEFUG Modified C4 new transfer pump fugitives 0.13 0.13 0.13 NA 18978 PBR 153695 - NSI 51 November 2018 LBFLARE9 LBFLARE9 Modified 291130 NA 36.30 34.32 1.98 01 rxr vent 114809 52 LBCCRGEN LBCCRGEN PBR 106.511 0.02 January 2019 New PBR 106.511 New LB1 engine NA 0.02 0.02 53 January 2019 LBFWGEN LBFWGEN PBR 106.511 PBR 106.511 New LB1 engine NA 0.05 0.05 0.05 New PBR 150783 - NSR 54 WWPENG WWPENG 260203 0.32 Removal of VAM WW Engine -0.32 -0.32 February 2019 Shutdown NA 4751 55 March 2019 LBRVE¹⁰ LBRVE¹⁰ Modified 114809 275583 Permit Amendment (various updates) NA 20.25 17.03 3.22 Permit Amendment (various updates) 56 LBFLARE^{9,10} LBFLARE^{9,10} 114809 275583 34.32 March 2019 Modified NA 39.55 5.23 Routine Emissions Permit Amendment (various updates) -LBFLARE^{9,10} LBFLARE^{9,10} 57 March 2019 Modified 114809 275583 NA 8.70 8.70 MSS Emissions 29.37

PAGE SUBTOTAL

Table 3F
Project Contemporaneous Changes ¹

 Company :
 Equistar Chemicals LP

 Permit Application No.:
 18978

 Criteria Pollutant:
 VOC

									A	В		
Proje	ject Date ²	Facility at Which Emiss	sion Change Occured ³	Federal NSR Classification	Permit No.	Project No.	Project Name or Activity	Baseline Period	Proposed Emissions ⁴	Baseline Emissions ⁵	Difference (tons/yr)	Creditable Decrease or
		FIN	EPN	0.000000					(tons/yr)	(tons/yr)	(A-B) ⁶	Increase '
58	March 2019	MSS-LB1-VC ¹⁰	MSS-LB1-VC ¹⁰	Modified	114809	275583	Permit Amendment (various updates)	NA	0.35	0.12	0.23	-
59	March 2019	L3THERMOX	L3THERMOX	New	SP 156014 - NSR 4477	298556	AB3 purge to temporary oxidizer	NA	10.39	-	10.39	10.39
60	April 2019	QE1416F QE1423F	QE1416F QE1423F	Modified	NSR 18978 and PSDTX752M5	288940	decoke pot amendment	2015-2016	3.78	0.06	3.72	3.72
61	May 2019	QEFUG	QEFUG	Modified	PBR 155981 - NSR 18978	298425	Y grade (new feed for the Olefins unit)	NA	1.32	-	1.32	1.32
62	May 2019	QE8050B ⁹	QE8050B ⁹	Modified	PBR 155981 - NSR 18978	298425	Y grade (new feed for the Olefins unit) PBR by Reference	2014-2015	11.00	7.08	3.92	-
63	May 2019	QE5802UA	QE5802UA	Modified	PBR 155981 - NSR 18978	298425	Y grade (new feed for the Olefins unit)	2007-2008	1.95	1.72	0.23	0.23
64	May 2019	QE5802UB	QE5802UB	Modified	PBR 155981 - NSR 18978	298425	Y grade (new feed for the Olefins unit)	2007-2008	1.95	1.71	0.25	0.25
65	May 2019	LBFLARE ⁹	LBFLARE ⁹	Modified	NSR 114809	302294	Amendment - routine emissions	NA	39.88	34.32	5.56	5.56
66	May 2019	LBFLARE9	LBFLARE ⁹	Modified	NSR 114809	302294	Amendment - MSS emissions	NA	14.06	-	14.06	14.06
67	June 2019	LBSUBGEN	LBSUBGEN	New	PBR 106.511	PBR 106.511	New LB1 engine	NA	0.01	-	0.01	0.01
68	August 2019	AAV5312	AAV5312	Modified	SP 157747 - NSR 5040	304330	Secondary seal install on IFR	2016-2017	0.43	0.64	-0.21	-0.21
69	August 2019	L3FLARE ⁹	L3FLARE ⁹	Modified	NSR 4477	292426	Amendment to include AB3 purge	2008-2009	13.80	4.19	9.61	-
70	September 2019	UTBLRHN	UTBLRHN	New	SP 158266 - NSR 5226	306337	Package boilers	NA	1.78	-	1.78	1.78
71	September 2019	UTBLRHS	UTBLRHS	New	SP 158266 - NSR 5226	306337	Package boilers	NA	1.78	-	1.78	1.78
72	September 2019	QE1AIRCOMP	QE1AIRCOMP	Shutdown	PBR 151971 - NSR 18978	270498	Olefins Permit Renewal-Amendment	NA	-	0.29	-0.29	-0.29
73	October 2019	VAFLARE ⁹	VAFLARE ⁹	Modified	SP 150300 - NSR 4751	280929	VA Flare Replacement and Relocation	2014-2015	37.79	36.88	0.91	-
74	October 2019	VAFUG	VAFUG	Modified	SP 150300 - NSR 4751	280929	VA Flare Replacement and Relocation	NA	0.18	-	0.18	0.18
75	October 2019	QEH2FLARE	QEH2FLARE	Modified	18978 and PSDTX752M5	270498	Olefins Permit Renewal-Amendment	2016-2017	3.59	0.24	3.35	3.35
76	October 2019	VAMFLARE9	VAMFLARE ⁹	Modified	SP 150300 - NSR 4751	308410	VA Flare Replacement and Relocation - New VAM Flare EPN	2014-2015	37.79	36.88	0.91	-
77	October 2019	VAFUG	VAFUG	Modified	SP 150300 - NSR 4751	308410	VA Flare Replacement and Relocation - New VAM Flare EPN	NA	0.18	-	0.18	0.18
78	November 2019	VACTHR_MASS	VACTHR_MASS	New	PBR 159035 - NSR 5040	308637	New mass spec analyzer	NA	0.01	-	0.01	0.01
79	January 2020	AAFLARE ⁹	AAFLARE ⁹	Modified	PBR 159787	311016	AAFLARE NHVcz	2009-2010	5.01	0.89	4.12	4.12
80	January 2020	BRGLOSS	BRGLOSS	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	1.49	5.35	-3.86	-3.86
81	January 2020	VAFUG	VAFUG	Modified	NSR 4751	260199	Renewal/Amendment	NA	3.68	-	3.68	3.68
82	January 2020	VATFFUG	VATFFUG	Modified	NSR 4751	260199	Renewal/Amendment	NA	0.01	=	0.01	0.01
83	January 2020	VAV573 VAV574	VAV573 VAV574	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	3.75	2.02	1.73	1.73
84	January 2020	VAV575 VAV576	VAV575 VAV576	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	2.56	1.53	1.03	1.03
85	January 2020	VAV577 VAV605	VAV577 VAV605	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	1.50	1.01	0.49	0.49
86	January 2020	VAV5117	VAV505 VAV5117	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	0.99	1.42	-0.43	-0.43
87	January 2020	VAV5117 VAV5521	VAV5117 VAV5521	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	1.16	1.02	0.14	0.14
88	January 2020	VAV580SC	VAV580SC	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	-	0.02	-0.02	-0.02
89	January 2020 January 2020	VAV578SC, VAV579SC	VAV578SC, VAV579SC	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	0.46	0.02	0.02	0.02
90	January 2020 January 2020	AARTSC	AARTSC	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	3.57	0.23	3.19	3.19
91	January 2020 January 2020	RCSLOSS	RCSLOSS	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	0.82	0.38	-0.16	-0.16
71	January 2020	NOSLOSS	NOSLUSS	Modified	NOV 4101	200199	Renewal/Amenument	2013-2014	0.02	0.56	PAGE SUBTOTAL [®]	52.48

Table 3F
Project Contemporaneous Changes ¹

 Company :
 Equistar Chemicals LP

 Permit Application No.:
 18978
 Criteria Pollutant:
 VOC

Pin Pin Pin Manuary 2009 WAWYL WAWYL Modified ISS 4 751, 2001.99 Renewal/Amendment 2013.2014 40.27 34.90 5.37 5.37 5.36 4.	Proje	ect Date ²	Facility at Which Emis	sion Change Occured ³	Federal NSR Classification	Permit No.	Project No.	Project Name or Activity	Baseline Period	Proposed Emissions ⁴	Baseline Emissions ⁵	Difference (tons/yr)	Creditable Decrease or
33			FIN	EPN	Olabbilloadoli				1 01100	(tons/yr)	(tons/yr)	(A-B) ⁶	Increase 7
194	92	January 2020	VAWW1	VAWW1	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	0.11	0.75	-0.64	-0.64
	93	January 2020	VAWW2	VAWW2	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	40.27	34.90	5.37	5.37
	94	January 2020	VAWW3	VAWW3	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	8.00	0.17	7.83	7.83
98 January 2020	95	January 2020	VAWW4	VAWW4	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	13.46	1.16	12.30	12.30
98	96	January 2020	VAWW5	VAWW5	Modified	NSR 4751	260199	Renewal/Amendment	2013-2014	0.11	0.69	-0.58	-0.58
99 January 2020 VAMFLARE [®] VAMFLARE [®] Modified PBR 19788 31.019 VAFLARE NPVex 2014-2015 37.87 38.88 0.09 0.00	97	January 2020	WWPENG	WWPENG	New	NSR 4751	260199	Renewal/Amendment	NA	0.19	-	0.19	0.19
March 2020	98	January 2020	L3FLARE9	L3FLARE9	Modified	SP 159535	310324	L3FLARE NHVcz	2008-2009	14.18	4.19	9.99	9.99
101 May 2020	99	January 2020	VAMFLARE9	VAMFLARE ⁹	Modified	PBR 159788	311019	VAFLARE NHVcz	2014-2015	37.87	36.88	0.99	-
103	100	March 2020	VAV605	VAV605	Modified	SP 160341	312806	New secondary seal on V605	2016-2017	0.96	1.16	-0.20	-0.20
May 2020	101	May 2020	VATFFUG	VATFFUG	Modified	PBR 160746	314298	Fugitives addition (various projects)	NA	0.15	-	0.15	0.15
May 2020 AABFUG AABFUG Modified PBR 160746 314298 Fugtives addition (various projects) NA 0.11 - 0.11 0.11	102	May 2020	AAFUG	AAFUG	Modified	PBR 160746	314298	Fugitives addition (various projects)	NA	0.08	-	0.08	0.08
105 June 2020 VAMFLARE	103	May 2020	AATFFUG	AATFFUG	Modified	PBR 160746	314298	Fugitives addition (various projects)	NA	0.01	-	0.01	0.01
106 September 2020 QE80508 ⁸ QE80508 ⁸ Modified NST 18978 and PSDTX752M6 PSDTX752M7 PSDTX752M6 PSDTX752M7 PSDTX75	104	May 2020	AABFUG	AABFUG	Modified	PBR 160746	314298	Fugitives addition (various projects)	NA	0.11	-	0.11	0.11
September 2020 QE80508" QE80508" Modified PSDIX755M6 309847 Gas and hydrogen increase 2014-2015 11.88 7.08 4.80 4.80	105	June 2020	VAMFLARE9	VAMFLARE9	Modified		315334	New VAM Flare Amendment	2014-2015	40.00	36.88	3.12	3.12
September 2020 QESOSOBMANT QESOSOBMANT Modified PSDTX752M6 309847 gas and hydrogen increase 2014-2015 0.15 - 0.15 0.15	106	September 2020	QE8050B ⁹	QE8050B ⁹	Modified		309847		2014-2015	11.88	7.08	4.80	4.80
October 2020 QE1002B QE1002B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.41 0.34 0.34 110 October 2020 QE1003B QE1003B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.43 0.32 0.32 0.32 111 October 2020 QE1004B QE1004B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.42 0.33	107	September 2020	QE8050BMAINT	QE8050BMAINT	Modified		309847		2014-2015	0.15	-	0.15	0.15
110	108	October 2020	QE1001B	QE1001B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.42	0.33	0.33
111 October 2020 QE1004B QE1004B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.42 0.33 0.	109	October 2020	QE1002B	QE1002B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.41	0.34	0.34
112	110	October 2020	QE1003B	QE1003B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.43	0.32	0.32
113 October 2020 QE1006B QE1006B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.42 0.33 0.33 0.33 1.14 October 2020 QE1007B QE1007B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.43 0.32 0.3	111	October 2020	QE1004B	QE1004B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.42	0.33	0.33
114 October 2020 QE1007B QE1007B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.43 0.32 0.32 115 October 2020 QE1008B QE1008B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.43 0.32 0.32 116 October 2020 QE1009B QE1009B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.15 0.60 0.60 117 October 2020 QE1010B QE1010B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.15 0.60 0.60 117 October 2020 QE1010B QE1010B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 1.50 0.97 0.53 0.53 118 October 2020 QE1011B QE1011B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 1.50 0.63 0.87 0.87 119 October 2020 QEFUG QEFUG Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.37 - 0.37 0.37 120 December 2021 QE3050B QE3050B Modified PBR 162490 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.34 0.48 3.86 3.86 121 December 2021 QE3050MAINT QE3050MAINT Modified PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.4.82 0.23 44.59 44.55 122 December 2021 QEL0AD_ARU QELOAD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.4.82 0.23 44.59 44.55 122 December 2021 QEL0AD_ARU QELOAD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.4.82 0.23 44.59 44.55 122 December 2021 QEL0AD_ARU QELOAD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.4.82 0.23 44.59 44.55 122 December 2021 QEL0AD_ARU QELOAD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.4.82 0.23 44.59 44.55 122 December 2021 QEL0AD_ARU QEL0AD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.4.82 0.23 44.59 44.55 122 December 2021 QEL0AD_ARU QEL0AD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.4.82 0.23 44.59 44.55 122 December 2021 QEL0AD_ARU QEL0AD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.4.82 0.23 44.59 44.55	112	October 2020	QE1005B	QE1005B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.42	0.33	0.33
115	113	October 2020	QE1006B	QE1006B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.42	0.33	0.33
116 October 2020 QE1009B QE1009B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.75 0.15 0.60 0.60 117	114	October 2020	QE1007B	QE1007B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.43	0.32	0.32
117 October 2020 QE1010B QE1010B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 1.50 0.97 0.53 0.53 118 October 2020 QE1011B QE1011B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 1.50 0.63 0.87 0.87 119 October 2020 QEFUG QEFUG Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.37 - 0.37 0.37 120 December 2021 QE3050B QE3050B Modified PSDTX752M6 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.34 0.48 3.86 3.86 121 December 2021 QE3050MAINT QE3050MAINT Modified PSDTX752M6 PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 44.82 0.23 44.59 122 December 2021 QELOAD_ARU QELOAD_ARU New New PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare	115	October 2020	QE1008B	QE1008B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.43	0.32	0.32
118 October 2020 QE1011B QE1011B Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 1.50 0.63 0.87 0.87 119 October 2020 QEFUG QEFUG Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.37 - 0.37 0.37 120 December 2021 QE3050B QE3050B Modified NSR 18978 and PSDTX752M6 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.34 0.48 3.86 3.86 121 December 2021 QE3050MAINT QE3050MAINT Modified NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 44.82 0.23 44.59 44.59 122 December 2021 QELOAD_ARU QELOAD_ARU New New PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 <0.01	116	October 2020	QE1009B	QE1009B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.75	0.15	0.60	0.60
119 October 2020 QEFUG QEFUG Modified PBR 162490 319561 Acetylene to Furnaces 2018-2019 0.37 - 0.37 0.37 120 December 2021 QE3050B QE3050B Modified NSR 18978 and PSDTX752M6 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.34 0.48 3.86 3.86 121 December 2021 QE3050MAINT QE3050MAINT Modified NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 44.82 0.23 44.59 44.51 122 December 2021 QELOAD_ARU QELOAD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 40.01 - 40.01 - 40.01 - 40.01 - 40.01 - 40.01 - - 40.01 - - - - - - - - - - - - - - - - - -	117	October 2020	QE1010B	QE1010B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	1.50	0.97	0.53	0.53
120 December 2021 QE3050B QE3050B Modified NSR 18978 and PSDTX752M6 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.34 0.48 3.86 3.86 121 December 2021 QE3050MAINT QE3050MAINT Modified NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 44.82 0.23 44.59 44.51 122 December 2021 QELOAD_ARU QELOAD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 < 0.01	118	October 2020	QE1011B	QE1011B	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	1.50	0.63	0.87	0.87
120 December 2021 QE3050B QE3050B Modified PSDTX752M6 TBA Olefins Permit Amendment - ARU Flare 2015-2016 4.34 0.48 3.86 3.86 121 December 2021 QE3050MAINT QE3050MAINT Modified NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 44.82 0.23 44.59 44.59 122 December 2021 QELOAD_ARU QELOAD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 < 0.01	119	October 2020	QEFUG	QEFUG	Modified	PBR 162490	319561	Acetylene to Furnaces	2018-2019	0.37	-	0.37	0.37
121 December 2021 QEJOSOMAINI QEJOSOMAINI Modified PSDTX752M7 IBA Olefins Permit Amendment - ARU Flare 2015-2016 44.82 0.23 44.59 44.51 122 December 2021 QELOAD_ARU QELOAD_ARU New NSR 18978 and PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 < 0.01 - < 0.01 < 0.01	120	December 2021	QE3050B	QE3050B	Modified		TBA	Olefins Permit Amendment - ARU Flare	2015-2016	4.34	0.48	3.86	3.86
122 December 2021 QELOAD_ARU QELOAD_ARU New PSDTX752M7 TBA Olefins Permit Amendment - ARU Flare 2015-2016 < 0.01 - < 0.01 < 0.01	121	December 2021	QE3050MAINT	QE3050MAINT	Modified	PSDTX752M7	TBA	Olefins Permit Amendment - ARU Flare	2015-2016	44.82	0.23	44.59	44.59
	122	December 2021	QELOAD_ARU	QELOAD_ARU	New		TBA	Olefins Permit Amendment - ARU Flare	2015-2016	< 0.01	-	< 0.01	< 0.01

Notes:

- 1 Individual Table 3F's should be used to summarize the project emission increase and net emission increase for each criteria pollutant.
- 2 The start of operation date for the modified or new facilities. Attach Table 4F for each project reduction claimed.
- 3 Emission Point No. as designated in NSR Permit or Emissions Inventory.
- 4 All records and calculations for these values must be available upon request.
- 5 All records and calculations for these values must be available upon request.
- 6 Proposed (column A) Baseline (column B).
- 7 If portion of the decrease not creditable, enter creditable amount.
- 8 Sum all values for this page.
- 9 End-Points netting approach was applied to these sources.

Table 3F
Project Contemporaneous Changes ¹

Company:	Equistar Chemicals LP			
Permit Applicatio	n No.:	18978	Criteria Pollutant:	NOx

									A	В		
Proje	ect Date ²	Facility at Which Emis	sion Change Occured ³	Federal NSR Classification	Permit No.	Project No.	Project Name or Activity	Baseline Period	Proposed Emissions ⁴ (tons/yr)	Baseline Emissions ⁵ (tons/yr)	Difference (tons/yr) (A-B) ⁶	Creditable Decrease or Increase ⁷
		FIN	EPN						(tolis/yl)	(tolis/yl)	(A-B)	IIICIGASE
1	May 2017	LBFLARE9	LBFLARE ⁹	Modified	114809	252146	Permit Amendment (2 flares -> 1; flare water seal)	NA	8.03	8.03	-	-
2	May 2017	LBEFLARE	LBEFLARE	Shutdown	114809	252146	Permit Amendment (2 flares -> 1; flare water seal)	NA	-	0.37	-0.37	-0.37
3	September 2017	Q1INC	Q1INC	Modified	PBR 138607 - NSR 19109	271610	Q1 Debottleneck	2013-2014	20.24	1.18	19.06	19.06
4	September 2017	QE8050B ⁹	QE8050B ⁹	Modified	PBR 148085 - NSR 18978	273069	Recycle Lube Oil PBR	2014-2015	23.20	9.25	13.95	•
5	February 2018	VAFLARE ⁹	VAFLARE ⁹	Modified	SP 150300 - NSR 4751	280929	VA Flare Replacement and Relocation	2010-2011	8.65	8.01	0.64	=
6	March 2018	VAWWENG	VAWWENG	New	PBR 150783 - NSR 4751	282599	Installation of new diesel engine (another EPN used for the engine)	NA	-	-	-	-
7	March 2018	WWPENG	WWPENG	New	PBR 150783 - NSR 4751	282599	Installation VAM WW Engine	NA	4.07	-	4.07	4.07
8	May 2018	HSFLARE	HSFLARE	Shutdown	19109	279513	Flare decommissioned	2015-2016	-	3.33	-3.33	-3.33
9	May 2018	QEH2FLARE ⁹	QEH2FLARE ⁹	Modified	18978 and PSDTX752M5	270498	Olefins Permit Renewal-Amendment	2016-2017	20.92	4.34	16.58	-
10	June 2018	QE1AIRCOMP	QE1AIRCOMP	New	PBR 151971 - NSR 18978	285878	Installation of new diesel engine	NA	0.62	-	0.62	0.62
11	August 2018	UTBLRG	UTBLRG	New	SP 153017 - NSR 5226	288914	Utilities burners	NA	-	-	i	-
12	August 2018	UTBLRH	UTBLRH	New	SP 153017 - NSR 5226	288914	Utilities burners	NA	-	-	i	-
13	August 2018	L3RTO	L3RTO	Modified	PBR 152926 - NSR 4477	288557	AB3 high rates	2011-2012	1.19	0.78	0.41	0.41
14	August 2018	VAFLARE ⁹	VAFLARE ⁹	Modified	PBR 153099 - NSR 4751	289191	V580 IFR -> flare	2010-2011	8.66	8.01	0.65	ı
15	October 2018	HSFLARE	HSFLARE	Shutdown	83822	292276	Flare decommissioned	2014-2015	-	0.54	-0.54	-0.54
16	October 2018	AAFLARE ⁹	AAFLARE ⁹	Modified	NSR 5040	302168	Acetic Acid Renewal-Amendment.	2010-2011	3.27	2.92	0.35	•
17	October 2018	VAFLARE ⁹	VAFLARE ⁹	Modified	PBR 154109 - NSR 4751	292258	B" RGC seal upgrade	2010-2011	8.79	8.01	0.78	÷
18	October 2018	L3FLARE ⁹	L3FLARE ⁹	Modified	SP 153696 - NSR 4477	291135	Route secondary distance pieces to flare	2016-2017	1.96	1.31	0.65	÷
19	November 2018	LBFLARE ⁹	LBFLARE ⁹	Modified	PBR 153695 - NSR 114809	291130	Q1 rxr vent	NA	8.30	8.03	0.27	-
20	January 2019	QE8050B ⁹	QE8050B ⁹	Modified	PBR 154294	292793	New CO2 analyzer that will purge to the flare (ethane)	2014-2015	23.20	9.25	13.95	-
21	January 2019	LBCCRGEN	LBCCRGEN	New	PBR 106.511	PBR 106.511	New LB1 engine	NA	1.72	-	1.72	1.72
											PAGE SUBTOTAL ⁸	21.65

Table 3F
Project Contemporaneous Changes ¹

Company:	Equistar Chemicals LP			
Permit Application	n No.:	L8978	Criteria Pollutant:	NOx

									Α	В		
Pro	oject Date ²	Facility at Which Emis	sion Change Occured ³	Federal NSR Classification	Permit No.	Project No.	Project Name or Activity	Baseline Period	Proposed Emissions ⁴	Baseline Emissions ⁵	Difference (tons/yr)	Creditable Decrease or
		FIN	EPN						(tons/yr)	(tons/yr)	(A-B) ⁶	Increase '
22	January 2019	LBFWGEN	LBFWGEN	New	PBR 106.511	PBR 106.511	New LB1 engine	NA	2.45	-	2.45	2.45
23	February 2019	WWPENG	WWPENG	Shutdown	PBR 150783 - NSR 4751	260203	Removal of VAM WW Engine	NA	-	4.07	-4.07	-4. 07
24	March 2019	LBFLARE ⁹	LBFLARE ⁹	Modified	114809	275583	Permit Amendment (various updates) - Routine Emissions	NA	8.68	8.30	0.38	-
25	March 2019	LBFLARE9	LBFLARE ⁹	Modified	114809	275583	Permit Amendment (various updates) - MSS Emissions	NA	1.31	8.03	-6.72	-
26	March 2019	L3THERMOX	L3THERMOX	New	SP 156014 - NSR 4477	298556	AB3 purge to temporary oxidizer	NA	1.07	-	1.07	1.07
27	May 2019	LBFLARE ⁹	LBFLARE ⁹	Modified	NSR 114809	302294	Amendment - routine emissions	NA	17.21	8.03	9.18	9.18
28	May 2019	LBFLARE9	LBFLARE ⁹	Modified	NSR 114809	302294	Amendment - MSS emissions	NA	7.43	-	7.43	7.43
29	June 2019	LBSUBGEN	LBSUBGEN	New	PBR 106.511	PBR 106.511	New LB1 engine	NA	3.77	-	3.77	3.77
30	August 2019	L3FLARE ⁹	L3FLARE ⁹	Modified	NSR 4477	292426	Amendment to include AB3 purge	2016-2017	2.48	1.31	1.17	-
31	September 2019	UTBLRHN	UTBLRHN	New	SP 158266 - NSR 5226	306337	Package boilers	NA	11.86	-	11.86	11.86
32	September 2019	UTBLRHS	UTBLRHS	New	SP 158266 - NSR 5226	306337	Package boilers	NA	11.86	-	11.86	11.86
33	September 2019	QE1AIRCOMP	QE1AIRCOMP	Shutdown	PBR 151971 - NSR 18978	270498	Olefins Permit Renewal-Amendment	NA	-	0.62	-0.62	-0.62
34	October 2019	VAMFLARE ⁹	VAMFLARE ⁹	Modified	SP 150300 - NSR 4751	308410	VA Flare Replacement and Relocation - New VAM Flare EPN	2010-2011	8.65	8.01	0.64	-
35	November 2019	QEH2FLARE ⁹	QEH2FLARE ⁹	Modified	SP 159015 - NSR 18978	308600	Convert to an unassited flare	2016-2017	19.72	4.34	15.38	15.38
36	January 2020	VAFLARE ⁹	VAFLARE ⁹	Modified	NSR 4751	260199	Renewal/Amendment	2010-2011	9.77	8.01	1.76	=
37	January 2020	WWPENG	WWPENG	New	NSR 4751	260199	Renewal/Amendment	NA	0.92	-	0.92	0.92
38	January 2020	L3FLARE ⁹	L3FLARE ⁹	Modified	SP 159535	310324	L3FLARE NHVcz	2016-2017	7.34	1.31	6.03	6.03
39	January 2020	VAMFLARE9	VAMFLARE ⁹	Modified	PBR 159788	311019	VAFLARE NHVcz	2010-2011	8.95	8.01	0.94	-
40	January 2020	AAFLARE ⁹	AAFLARE ⁹	Modified	PBR 159787	311016	AAFLARE NHVcz	2010-2011	3.50	2.92	0.58	0.58
41	June 2020	VAMFLARE9	VAMFLARE ⁹	Modified	SP 150300 - NSR 4751	315334	New VAM Flare Amendment	2010-2011	10.46	8.01	2.45	2.45
42	September 2020	QE8050B ^{9,10}	QE8050B ^{9,10}	Modified	NSR 18978 and PSDTX752M5	309847	Olefins Permit Amendment - Main Flare	2014-2015	30.09	9.25	20.84	-
											PAGE SUBTOTAL ⁸	68.29

Table 3F Project Contemporaneous Changes ¹

Company :	Equistar Chemicals LP			
Permit Application	n No.:	18978	Criteria Pollutant:	NOx

Pro	ject Date ²	Facility at Which Emis	sion Change Occured ³	Federal NSR Classification	Permit No.	Project No.	Project Name or Activity	Baseline Period	Proposed Emissions ⁴ (tons/yr)	Baseline Emissions ⁵ (tons/yr)	Difference (tons/yr) (A-B) ⁶	Creditable Decrease or Increase ⁷
43	December 2021	QE3050B	QE3050B	Modified	NSR 18978 and PSDTX752M6	TBA	Olefins Permit Amendment - ARU Flare	2012-2013	4.50	1.73	2.77	2.77
44	December 2021	QE3050MAINT	QE3050MAINT	Modified	NSR 18978 and PSDTX752M7	TBA	Olefins Permit Amendment - ARU Flare	2012-2013	10.12	0.02	10.10	10.10
	•	•					•				PAGE SUBTOTAL ⁸	12.87
									Summar	y of Contemporan	eous Changes	102.81

Notes:

- 1 Individual Table 3F's should be used to summarize the project emission increase and net emission increase for each criteria pollutant.
- 2 The start of operation date for the modified or new facilities. Attach Table 4F for each project reduction claimed.
- 3 Emission Point No. as designated in NSR Permit or Emissions Inventory.
- 4 All records and calculations for these values must be available upon request.
- 5 All records and calculations for these values must be available upon request.
- 6 Proposed (column A) Baseline (column B).
- 7 If portion of the decrease not creditable, enter creditable amount.
- 8 Sum all values for this page.
- 9 End-Points netting approach was applied to these sources.
- 10 Credits were purchased for the nonattainment permit.

APPENDIX C RBLC DATABASE

RBLC Database

RACT/BACT/LAER Clearinghouse (RBLC) search results are included in this appendix in the following order:

- > RBLC Search Results for Flares, Pollutant NOx
- > RBLC Search Results for Process Vents, Pollutant VOC
- > RBLC Search Results for MSS Events, Pollutant VOC
- > RBLC Search Results for Loading, Pollutant VOC

Column C				PERMIT_ISSUANCE_		PROCCESS				EMISSION_	EMISSION_	EMISSION_LIMIT_1_	EMISSION	EMISSION_	EMISSION_LIMIT_2_	STANDARAD_ STANDARD_EMISSIO	STANDARD_LIMIT_AVG_
County C			STATE	DATE	PROCESS_NAME	TYPE	PRIMARY_FUEL	POLLUTANT	CONTROL_METHOD_DESCRIPTION	LIMIT_1	LIMIT_1_UNIT	AVG_TIME_CONDITION	LIMIT_2	LIMIT_2_UNIT	AVG_TIME_CONDITION	EMISSION_LIMIT LIMIT_UNIT	TIME_CONDITION
Color Colo			AK	1/23/2015	Drilling, HP, and LP Flares	19.31	Gas	Nitrogen Oxides (NOx)		0.068	LB/MMBTU			,		0	
ACCOUNTY ACCOUNTY																	
County C	K	ENAI NITROGEN															
ACCOS CONTRACTION Control Co	K-0083 O	PERATIONS	AK	1/6/2015		19.31	Natural Gas	Nitrogen Oxides (NOx)		0.068	LB/MMBTU)		0	
Control Research Control Res	L-0249 C	VONIK DEGUSSA ORPORATION	AL.	1/7/2016	HCN PRODUCTION UNIT •	19 3		Nitropen Oxides (NOx)	GOOD COMBUSTION PRACTICES	14.29	LR/H	ANNUAL AVERAGE	l .	,			
Company Comp	E	VONIK DEGUSSA	ZMD		HCN PRODUCTION UNIT -												
Google Option			AL	1/7/2010		19.3		Nitrogen Oxides (NOx)	GOOD COMBUSTION PRACTICES	14.29	LB/H	ANNUAL AVERAGE	-)		0	
PRODUCTIONS PRODUCTIONS PRODUCTION P			AL	1/7/2010		19.3		Nitrogen Oxides (NOx)	GOOD COMBUSTION PRACTICES	1.79	LB/H)		0	
August Confession		TION WE DE OFFICE															
April			AL	1/7/2010		19.31		Nitrogen Oxides (NOx)	GOOD COMBUSTION PRACTICES	20.01	LB/H			,		0	
Description	E.	L DORADO CHEMICAL			AMMONIA PLANT												ROLLING 3 HOUR
March Marc			AR	11/18/2013	AMMONIA VENT FLARE	19.31	NATURAL GAS	Nitrogen Oxides (NOx)	GOOD COMBUSTION PRACTICE	792.03	LB/H		6.:	T/YR		0.098 LB/MMBTU	AVERAGE ROLLING 3 HOUR
Section Conference Confer	R-0121 C	OMPANY	AR	11/18/2013	PROCESS SSM FLARE	19.31	NATURAL GAS	Nitrogen Oxides (NOx)	GOOD COMBUSTION PRACTICE	0.093	LB/H	AVERAGE	0.4	T/YR	AVERAGE	0.098 LB/MMBTU	AVERAGE
Company Comp			ND.	11/19/2012		10.21	NATURAL GAS	Nitro con Orridos (NOrr)		10.02	I D/LI		12.0	TVD		0.098 I B/M/MBTU	ROLLING 3 HOUR AVERAGE
Description			IA							10.02	LD/II	AVERAGE	43.8) 1/1K	AVERAGE	0.098 EB/MINIBTO	AVERAGE
Description Company	M	IIDWEST FERTILIZER							NATURAL GAS PILOT, FLARE					LB/H, SSM			
Dept Confrigeration No. 6-6200 MALTERIAL RESIDENCE 191 NOTEGN 192 NOTEGN 192			IN	6/4/2014	FRONT END FLARE	19.3	NATURAL GAS	Nitrogen Oxides (NOx)		0.068	LB/MMBTU	3-HK AVERAGE	595.4		3-HR AVERAGE	0	
Decoration Configuration	i-0173 C	ORPORATION	IN	6/4/2014		19.3	NATURAL GAS	Nitrogen Oxides (NOx)	MINIMIZATION PRACTICES	0.068	LB/MMBTU	3-HR AVERAGE	624.9	VENTING	3-HR AVERAGE	0	
Design			IN	6/4/2014		19.21	NATURAL GAS	Nitrogen Oxides (NOv)		0.068	LB/MMRTIT	3-HR AVERAGE	12		3-HR AVERAGE	0	
MINON ALLEY #SECRESS N	0		i .		FRONT END PROCESS				NATURAL GAS PILOT, FLARE					LB/H, SSM			
Delity Composition Delity Composition Delity Composition Delity Composition Delity		LC	IN	9/25/2013		19.31	NATURAL GAS PILOT	Nitrogen Oxides (NOx)		0.068	LB/MMBTU	3-HR AVERAGE	595.4		3-HR AVERAGE	0	1
Description			IN	9/25/2013		19.31	NATURAL GAS	Nitrogen Oxides (NOx)		0.068	LB/MMBTU	3-HR AVERAGE	624.9		3-HR AVERAGE	0	
Delity D	0													LB/H, SSM			
Description			IN	9/25/2013	FLARE	19.3	NATURAL GAS	Nitrogen Oxides (NOx)		0.068	LB/MMBTU	3-HR AVERAGE	12		3-HR AVERAGE	0	
CORPORATION N	√-0179 L	LC	IN	9/25/2013	UAN PLANT VENT FLARE	19.31		Nitrogen Oxides (NOx)	MINIMIZATION PRACTICES	0.068	LB/MMBTU	3-HR AVERAGE	332.0	VENTING	3-HR AVERAGE	0	
MODEST FERTILIZER No. 6420H BACK END FLARE 19.1 NATURAL GAS Namegae Oades (CO) NEMBERTATION 600 BAMORT 5440 14.8 15.0 14.8			INI	6/4/2014	ERONT END ELARE	10.3	NATURAL GAS	Nitronen Ovider (NOv)		0.068	I RAIMRTII	3-HP AVERAGE	505.4		3-HP AVERAGE		
MANSWERT FERTILIZER AMAGNIA STORAGE 1931 NATURAL GAS 1931 NATU	M	IIDWEST FERTILIZER	II.V						NATURAL GAS PILOT, FLARE					LB/H, SSM			
Despite Corporation N			IN	6/4/2014		19.31	NATURAL GAS	Nitrogen Oxides (NOx)		0.068	LB/MMBTU	3-HR AVERAGE	624.9		3-HR AVERAGE	0	
LA-224 COMPLEX LAB UNIT LA 11/29/2016 19.31 Satural Gas Narogen Oxides (NO) Seem Assirted 19.23 BH HOURLY MAXIMUM 0			IN	6/4/2014		19.31	NATURAL GAS	Nitrogen Oxides (NOx)		0.068	LB/MMBTU	3-HR AVERAGE	12		3-HR AVERAGE	0	
La-254 Norto Hydrogen Plant La					EQT0026 - LAB Unit Flare LF-												
19.21 MORCO HYDROGEN PLANT LA	A-0244 C	OMPLEX - LAB UNIT	LA	11/29/2010	1	19.31	Natural Gas	Nitrogen Oxides (NOx)		10.23	LB/H	HOURLY MAXIMUM	-	0		0	
CONTENT AND MAXIMUM TIP VELOCITY PROVISIONS OF & GTR G SURPART A OR ADRESS TO THE REQUIREMENTS OF #0 CTR GUILDOOK OFFERATE HARE AT ALL THIS E MENSIONS ARE BRING VENTED TO IT, OFFERATE WITH HAME LA-0272 FACILITY	A-0264 N	ORCO HYDROGEN PLANT	LA	9/4/2012	Flare (EQT0003)	19.3	natural gas	Nitrogen Oxides (NOx)		0.03	LB/H	HOURLY MAXIMUM	0.0	T/YR	ANNUAL MAXIMUM	0	
CONTENT AND MAXINUM TIP			LA	3/27/2013		19.3		Nitrogen Oxides (NOx)	CONTENT AND MAXIMUM TIP VELOCITY PROVISIONS OF 40 CFR 63 SUBPART A OR ADHERE TO THE REQUIREMENTS OF 40 CFR 63.11(B)(6)(i); OPERATE FLARE AT ALL TIMES EMISSIONS ARE BEING VENTED TO IT; OPERATE WITH FLAME	0.04	LB/H	HOURLY MAXIMUM	0.1	3 T/YR	ANNUAL MAXIMUM	0	
CONTEST AND MAXIMUM TIP	1 02/2		2	0.2712010	12.140 (8800 0)	1000		Timogen Cames (TOA)		0.01	LIJE XX	110010111111111111111111111111111111111	0.1		THE COLUMN THE PROPERTY OF THE		
CONTENT AND MAXIMUM TIP VELOCITY PROVISIONS OF 40 CFR 63 VELOCITY PROVISIONS OF 40 CFR 63 VELOCITY PROVISIONS OF 40 CFR 63 VELOCITY PROVISIONS OF 40 CFR 64 VELOCITY PROVISIONS OF 40 CFR 65 VELOCITY PROVISIONS OF			LA	3/27/2013		19.3		Nitrogen Oxides (NOx)	CONTENT AND MAXIMUM TIP VELOCITY PROVISIONS OF 40 CFR 63 SUBPART A OR ADHERE TO THE REQUIREMENTS OF 40 CFR 63.11(B)(6), OPERATE FLARE AT ALL TIMES EMISSIONS ARE BEING VENTED TO IT; OPERATE WITH FLAME PRESENT AT ALL TIMES.		LB/H	HOURLY MAXIMUM	0.5	4 T/YR	ANNUAL MAXIMUM	0	
COMPLY WITH THE MINIMUM HEAT CONTENT AND MAXIMUM TIP VELOCITY PROVISIONS OF 40 CFR 63 SURPART A OR ADDREE TO THE									CONTENT AND MAXIMUM TIP VELOCITY PROVISIONS OF 40 CFR 63 SUBPART A OR ADHERE TO THE REQUIREMENTS OF 40 CFR 63.11(B)(6)(i); OPERATE FLARE AT ALL TIMES EMISSIONS ARE BEING VENTED TO IT; OPERATE WITH FLAME								
CONTENT AND MAXIMUM TIP VELOCITY PROVISIONS OF 40 FG 63 SUBPART A OR ADHERE TO THE	A-0272 F.	ACILITY	LA	3/27/2013	FLARE (2204-B)	19.3	-	Nitrogen Oxides (NOx)		0.15	LB/H	HOURLY MAXIMUM	0.5	T/YR	ANNUAL MAXIMUM	0	
REQUIREMENTS OF 40 CPK REQUIREMENTS OF 40			LA	3/27/2013		19.3		Nitrogen Oxides (NOx)	CONTENT AND MAXIMUM TIP VELOCITY PROVISIONS OF 40 CFR 63 SUBPART A OR ADHERE TO THE REQUIREMENTS OF 40 CFR 63.11(B)(6)(6), OPERATE FLARE AT ALL TIMES EMISSIONS ARE BEING VENTED TO IT; OPERATE WITH FLAME		LB/H	HOURLY MAXIMUM	0.0	s T/YR	ANNUAL MAXIMUM	0	

RBLCID	FACILITY_NAME	FACILITY	PERMIT_ISSUANCE_	PROCESS NAME	PROCCESS	PRIMARY FUEL	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION	EMISSION_	EMISSION_LIMIT_1_	EMISSION_	EMISSION_	EMISSION_LIMIT_2_	STANDARAD_	STANDARD_EMISSION_	STANDARD_LIMIT_AVG_ TIME_CONDITION
KBLCID	LINEAR ALKYL BENZENE	STATE		_	_1116	FRIMARI_FUEL		CONTROL_METHOD_DESCRIPTION				LIMIT_2	LIMIT_2_UNIT	AVG_TIME_CONDITION	EMISSION_IAMIT	LIMIT_UNIT	TIME_CONDITION
LA-0275	(LAB) UNIT	LA	4/29/2016	LF-1 - LAB Unit Flare	19.31	Natural Gas	Nitrogen Oxides (NOx)	Steam assisted	10.1:	LBS/HR	HOURLY MAXIMUM	0			0		
								Compliance with 40 CFR 63.11(b) and the applicable provisions of 40 CFR 63 Subparts FFFF and SS, including, but not limited 64, 0FR 63 Sub 64, 0FR 63 Sub 64, 0FR 63 SB, 16 there compliance assessment requirements of 40 CFR 63 SB, and 40 CFR 63 SB, and 40 CFR 63 CB, 40 SB, and 64 CFR 63 SB, and 65 CF	2								
	LAKE CHARLES CHEMICAL			Multi-Point Ground Flares				developed in accordance with 40 CFR 63.6(c)(3), monitoring the volume of vent gas routed to the flares, the lower heating value or composition of the vent gas, the fuel gas flow rate, and for steam assisted flares, the flow of steam to the flare tips; and the use of natural	r								
LA-0291	COMPLEX GTL UNIT	LA	5/23/2014	(EQT 836 & amp; 837)	19.31		Nitrogen Oxides (NOx)	gas as pilot gas.	1072.8	LB/HR	HOURLY MAXIMUM	44.86	TPY	ANNUAL MAXIMUM	0		
LA-0295	WESTLAKE FACILITY		7/12/2016	Cogeneration Plant Flare (449, EQT 326)	19.31		Nitro Onitro AlOno		10.	LB/H	HOURLY MAXIMUM						
LA-0295	WEGILAKE FACILITY	LA	//12/2016	LQ1 320)	19.3		Nitrogen Oxides (NOx)		12.0	LiO/II	DOUBLI MAXIMUM	0			1		
	LAKE CHARLES CHEMICAL			LLPDE/LDPE Multi-Point				Compliance with 40 CFR 63.11(b) and the applicable provisions of 40 CFR 63 Subpart SS, manimization of flaring through adherence to the SSMP developed in accordance with 40 CFR 63.6(c/G), continuously monitoring the volume of vent gas rotated to the flare, the lower heating value or composition of the ven gas, the fuel gas flow rate, and for steam-assisted flares, the flow of steam to the flare	t								
LA-0296	COMPLEX LDPE UNIT	LA	5/23/2014	Ground Flare (EQT 640)	19.3		Nitrogen Oxides (NOx)	tip; and the use of natural gas as pilot gas.	174.0	LB/HR	HOURLY MAXIMUM	39.25	TPY	ANNUAL MAXIMUM	0		
	LAKE CHARLES CHEMICAL COMPLEX ETHOXYLATION			ETO/Guerbet Elevated Flare				Compliance with 40 CFR 63.11(b) and the applicable provisions of 40 CFR 63 Subpart									
LA-0299	UNIT	LA	5/23/2014	(EQT 1079)	19.3		Nitrogen Oxides (NOx)	PPP	8.5	LB/HR	HOURLY MAXIMUM	3.26	TPY	ANNUAL MAXIMUM	0		
	LAKE CHARLES CHEMICAL COMPLEX ETHOXYLATION			ETO/Guerbet Vapor				Compliance with 40 CFR 63.11(b) and the applicable provisions of 40 CFR 63 Subpart									
LA-0299	UNIT	LA	5/23/2014	Combustion Unit II (EQT 1080)	19.31		Nitrogen Oxides (NOx)	PPP	8.7	LB/HR	HOURLY MAXIMUM	27.72	TPY	ANNUAL MAXIMUM	0		
LA-0301	LAKE CHARLES CHEMICAL COMPLEX ETHYLENE 2 UNIT	LA	5/23/2014	Elevated Flare (EQT 981)	19.31		Nitrogen Oxides (NOx)	Complance with 40 CFR 63.1(b) and 40 CFR 63.9 when 55, minimization of flaring through adherence to Sasolière's SSMP, monitoring the volume of vert gas restude to the flares, the lower heating value or composition of the vert gas, the find gas flow rate, and for steam-assisted flares, the flow of steam to the flare tips; and the use of natural gas as pilot gas. Complance with 40 CFR 63.1(b) and 40 CFR 63.00 complance with 40 CFR 63.00 complance with 40 CFR 63.00 complaints with the flare tips of the flare tips	12383.1:	LB/HR	HOURLY MAXIMUM	22.62	ТРУ	ANNUAL MAXIMUM	0		
	LAKE CHARLES CHEMICAL							the flares, the lower heating value or composition of the vent gas, the fuel gas flow rate, and for steam-assisted flares, the flow of steam to the flare tips; and the use of natural									
LA-0301	COMPLEX ETHYLENE 2 UNIT LAKE CHARLES CHEMICAL COMPLEX EOAIEG UNIT	LA		Ground Flare (EQT 982) Elevated Flare and Ground Flare (EQTs 1012 & mp; 1013)	19.3		Nitrogen Oxides (NOx) Nitrogen Oxides (NOx)	gas as pilot gas Compliance with 40 CFR 63.11(b) and the obseed vost system requirements of 40 CFR 63.148, minimization of faring through adherence to the SSNP developed in accordance with 40 CFR 65.6(c)(c); monitoring the volume of vort gas routed to the flares, the lower healing value or composition of the vent gas, the fired gas flow continued to the compliance of the composition of the vent gas, the fired gas flow continued to the flare tips; and the use of natural gas as pilot gas as pilot gas as pilot gas.			HOURLY MAXIMUM	80.84	TPY*	ANNUAL MAXIMUM ANNUAL MAXIMUM	0		
LA-0303	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL UNIT	LA		Elevated Flare (EQT 133)	19.31			Compliance with 40 CFR 63.11(b) and the applicable provisions of 40 CFR 63 Subpart SS, manimization of thring through adherence to the SSM developed in accordance with 4 CFR 63 66/G); monitoring the volume of vert gas routed to the flanes, the lover leasting value or composition of the vort gas, the full gas flow rate, and for steame sixed flanes, the flow of steam to the flane tipe; and the use of natural gas as plot gas.			HOURLY MAXIMUM	41.42		ANNUAL MAXIMUM	0		

		FACILITY	PERMIT ISSUANCE	T	PROCCESS				FAIISSION	EMISSION	EMISSION_LIMIT_1_	EMISSION	EMISSION	EMISSION LIMIT 2	STANDARAD	STANDARD FAIISSION	STANDARD LIMIT AVG
RBLCID	FACILITY_NAME	STATE		PROCESS_NAME		PRIMARY_FUEL	POLLUTANT	CONTROL_METHOD_DESCRIPTION		LIMIT 1 UNIT	AVG_TIME_CONDITION						TIME_CONDITION
								Compliance with 40 CFR 63.11(b) and the applicable provisions of 40 CFR 63 Subpart									
								SS; minimization of flaring through adherence									
								to the SSMP developed in accordance with 40									
								CFR 63.6(e)(3); monitoring the volume of									
								vent gas routed to the flares, the lower heating									
	LAKE CHARLES CHEMICAL							value or composition of the vent gas, the fuel gas flow rate, and for steam-assisted flares,									
	COMPLEX ZIEGLER ALCOHOL			Emission Combustion Unit #3				the flow of steam to the flare tips; and the use									
LA-0303	UNIT	LA	5/23/2014	Ground Flare (EQT 500)	19.31		Nitrogen Oxides (NOx)	of natural gas as pilot gas	49.68	LB/HR	HOURLY MAXIMUM	10.78	TPY	ANNUAL MAXIMUM	0		
	LAKE CHARLES METHANOL																
LA-0305	FACILITY	LA	6/30/2016	Flares	19.31	Fuel Gas	Nitrogen Oxides (NOx)		0			- 0			- 0		
								complying with 40 CFR 60.18; good									
	INDORAMA LAKE CHARLES							combustion practices (including establishment									
LA-0314	FACILITY	LA	8/3/2016	Flare No. 1 - 008	19.31	natural gas	Nitrogen Oxides (NOx)	of flare minimization practices)	0.068	LB/MM BTU		- 0			0		
	INDORAMA LAKE CHARLES			Pyrolysis Gasoline Tank Flare				complying with 40 CFR 60.18 and 63.11; good combustion practices (including									
	FACILITY	LA	8/3/2016		19.31	natural gas	Nitrogen Oxides (NOx)	establishment of flare minimization practices)	0.068	LB/MM BTU							
								,									
	INDORAMA LAKE CHARLES							good combustion practices (including			THREE ONE-HOUR TEST						
LA-0314	FACILITY	LA	8/3/2016	vessel evacuation flare - 018	19.31	natural gas	Nitrogen Oxides (NOx)	establishment of flare minimization practices)	0.068	LB/MM BTU	AVERAGE	0			0		
LA-0317	METHANEX - GEISMAR METHANOL PLANT	T A	12/22/2016	flares (I-X-703, II-X-703)	10 31	natural gas	Nitronen Ovider (NOv)	complying with 40 CFR 63.11									
	MONSANTO LULING PLANT	LA		Emergency Flare		Natural Gas		Proper design and operation	0			0			0		
	GULF COAST METHANOL																
*LA-0346	COMPLEX	LA	1/4/2018	Flares (4)	19.31		Nitrogen Oxides (NOx)	Complying with 40 CFR 63.11(b)	0			- 0			0		
	promone promoners and a			VE 1 D 0 1 D							PER ROLLING 12 MONTH						
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	OH	12/21/2018	High Pressure Ground Flare	1931	Natural gas	Nitrogen Ovides (NOv.)	use of natural gas as pilot light fuel	0.536	T/YR	PER ROLLING 12 MONTH PERIOD. SEE NOTES.						
011 0510	COM LESS	-	12.21.2010	(1000)	12.07	. morar gas	Trinogen Oxides (110x)	ase or material gas as prior light for	0.550		TEMOD: GED: TOTEG				†		
	PTTGCA PETROCHEMICAL			Low Pressure Ground Flare							PER ROLLING 12 MONTH						
OH-0378	COMPLEX	OH	12/21/2018			Natural gas	Nitrogen Oxides (NOx)	use of natural gas as pilot light fuel	0.232	T/YR	PERIOD. SEE NOTES.	- 0			0		
TX-0575	SABINA PETROCHEMICALS LLC	TV	8/20/2010	HIGH AND LOW PRESSURE		NATURAL GAS	Nitrogen Oxides (NOx)		0.07	T/YR	ANNUAL						
1A-0373	PEONY CHEMICAL	11.5	8/20/2010	FLANES	17.31	Natural gas, ammonia,	Nitrogen Oxides (NOX)		9.07	I/IK	ANNUAL				- ·		
TX-0728	MANUFACTURING FACILITY	TX	4/1/2015	ammonia flare	19.31	hydrogen	Nitrogen Oxides (NOx)	no control	223.41	LB/H		5.39	T/YR		0		
	PORT ARTHUR ETHANE SIDE																
TX-0815	CRACKER	TX	1/17/2017	Multi Point Ground Flare	19.31	NATURAL GAS	Nitrogen Oxides (NOx)	Good Combustion Practices & Design		T/YR		0			0		
*TV 0020	BEAUMONT CHEMICAL PLANT	FTV	6/13/2018	High and Low Pressure Flare	19.31		Nitrogen Oxides (NOx)	Meet the design and operating requirements of 40 CFR A\$60.18.	١ .								
174-0838	BEACMONT CHEMICALTEAN	11.	013/2016	vap	19.31		Nitrogen Oxides (NOX)	Meet the design and operating requirements of	,						· ·		
*TX-0838	BEAUMONT CHEMICAL PLANT	ΓTX	6/13/2018	UDEX FLARE	19.31		Nitrogen Oxides (NOx)	40 CFR §60.18.	0			0			0		
								Meet the design and operating requirements of									
*TX-0838	BEAUMONT CHEMICAL PLANT	ΓTX	6/13/2018	PARAXYLENE FLARE	19.31		Nitrogen Oxides (NOx)	40 CFR §60.18.	0			- 0			0		
*TX-0838	BEAUMONT CHEMICAL PLANT	LTX	6/13/2018	C & amp; S FLARE	19.31		Nitrogen Oxides (NOx)	Meet the design and operating requirements of 40 CFR A\$60.18.	١,								
	POLYETHYLENE 7 FACILITY			FLARE	19.31			GOOD COMBUSTION PRACTICES	ő			0			0		
	EQUISTAR CHEMICALS							good combustion practices, design, natural									
*TX-0864	CHANNELVIEW COMPLEX	TX	9/9/2019	Multi Point Ground Flare	19.31	natural gas	Nitrogen Oxides (NOx)	gas fuel	0			- 0			0		
*TX-0864	EQUISTAR CHEMICALS CHANNELVIEW COMPLEX	TX	9/9/2010	Elevated Flare	10.21	natural gas	Nitrogen Oxides (NOx)	good combustion practices, design, natural gas fuel						1			
1.4-0004	EQUISTAR CHEMICALS	1.4	5,9/2019	MULTIPOINT GROUND	17.31	manarat Bas	- mogen Ozines (NOX)	Good combustion practices, proper design and				<u> </u>		t	T		
*TX-0865	CHANNELVIEW COMPLEX	TX	9/9/2019	FLARE	19.31	NATURAL GAS	Nitrogen Oxides (NOx)	operation	0			0			0		
	EQUISTAR CHEMICALS							Good combustion practices, proper design and							1		
*TX-0865	CHANNELVIEW COMPLEX HYDOW DROCARBONS	TX	9/9/2019	MEROX ELEVATED FLARE	19.31	NATURAL GAS	Nitrogen Oxides (NOx)	operation	- 0		-	- 0	-	-	- 0		
*TX-0893	FACILITIES	TX	8/7/2020	Flare	19 31	natural gas	Nitrogen Oxides (NOv)	Good combustion practices	0.138	LB/MMBTU	UNASSISTED	0.068	LB/MMBTU	STEAM ASSISTED			
111 0000	CHEVRON PHILLIPS	1"	0.712020		1,7,37	- Ben	- Jen Chines (104)		9.100			3.000			1 ×		
	CHEMICAL SWEENY			Unit 81 Flare (EPN 81-97-		NATURAL GAS, PLANT		Good combustion practices, proper design and	4					1			
*TX-0894	COMPLEX	TX	10/30/2020	9611)	19.31	FUEL GAS	Nitrogen Oxides (NOx)	operation.	0.068	LB/MMBTU		- 0			0		
	MOTIVA POLYETHYLENE							good combustion practices and the use of					1	1			
*TX-0904	MOTIVA POLYETHYLENE MANUFACTURING COMPLEX	TX	9/11/2020	FLARE	19.31	NATURAL GAS	Nitrogen Oxides (NOx)	good combustion practices and the use of gaseous fuel						1			
	DIAMOND GREEN DIESEL	T"	1.21.2020	T .			3 (.104)	good combustion practices and the use of	Ť			T .		ĺ	1		
*TX-0905	PORT ARTHUR FACILITY	TX	9/16/2020	FLARE	19.31		Nitrogen Oxides (NOx)	gaseous fuel	0			0			0		

		FACILITY	PERMIT_ISSUANCE_	I	PROCCESS				I	PERCENT
RBLCID	FACILITY NAME	STATE		PROCESS NAME		PROCESS NOTES	POLLUTANT	CONTROL METHOD DESCRIPTION	CASE-BY-CASE BASIS	EFFICIENCY
				_						
								All process vents and pressure relief devices must vent to		
								a control device specified by the permit (flare or thermal		
								oxidizer). No pressure relief device may emit directly to		
	LINEAR ALPHA OLEFINS						Volatile Organic Compounds	the atmosphere under any circumstance. The capture		
TX-0811	PLANT	TX	11/3/2016	Process Vents	64 003		(VOC)	system must be inspected regularly to verify integrity.	LAER	0
	1						(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0000000000000000000000000000000000000		
								Isobutylene absorber 94% DRE VOC for recycle to the		
								process. The VOC-stripped absorber effluent is then		
	LYONDELL CHEMICAL						Volatile Organic Compounds	routed to the flare, additional 98 % VOC DRE. The		
TX-0823	BAYPORT CHOATE PLANT	TX	6/7/2017	Process Vents	64 003		(VOC)	estimated combined effect approximately 99.8 % DRE.	LAER	99.8
171 0025	British enough british	1	0,772017	1 TOCCSS TORES	01,002		Volatile Organic Compounds	estimated combined circuit approximately 55.0 70 BTCE.	E. I.S.	77.0
TX-0836	CHOCOLATE BAYOU	TX	5/11/2018	PROCESS VENTS	64.003	NORMAL OPERATION AND MSS	(VOC)	THERMAL OXIDIZER	LAER	99.9
174-0050	CHOCOLATE BATTOC	174	5/11/2010	TROCESS VENTS	01.003	Process vents that fluctuate in VOC concentration not suitable	Volatile Organic Compounds	THERWINE ON DIEEK	E. IEK	77.7
TX-0863	POLYETHYLENE 7 FACILITY	TX	9/3/2019	PROCESS VENTS	64 003	for recycle or use as fuel	(VOC)	FLARE	LAER	98
171 0005	EOUISTAR CHEMICALS	1.11	3/3/2013	TROCESS VEIVES	01.003	Tot recycle of use us rue:	Volatile Organic Compounds	T La tito	E. I.S.	70
TX-0864	CHANNELVIEW COMPLEX	TX	9/9/2019	Process Vents	64.003		(VOC)	Elevated Flare, MPGF	LAER	98
124-0004	EOUISTAR CHEMICALS	124	3/3/2013	Trocess vents	04.005		Volatile Organic Compounds	Elevated Falle, Wil Gi	E. IER	70
TX-0864	CHANNELVIEW COMPLEX	TX	9/9/2019	Vis-broken Process Vents	64.003		(VOC)	thermal oxidizer	LAER	99,99
124 0001	EOUISTAR CHEMICALS	121	2/2/2012	VIS GIOREII TIGGESS VEIKS	04.003		Volatile Organic Compounds	dictinui oxidizci	Lilek	22.22
TX-0865	CHANNELVIEW COMPLEX	TX	9/9/2019	PDH PROCESS VENTS	64.003		(VOC)	MULTIPOINT GROUND FLARE	LAER	99.5
111 0000	EQUISTAR CHEMICALS		27,772017	I DITTROCESS VENTS	01.003		Volatile Organic Compounds	MODIN ON TOROGODI DI DE ME	L. I.S.	77.0
TX-0865	CHANNELVIEW COMPLEX	TX	9/9/2019	MEROX PROCESS VENTS	64.003		(VOC)	ELEVATED FLARE	LAER	98
111 0000	CHILL BETTER		3737,2013	MERCHI I ROCESS VENTS	01.000		(,55)	The uncontrolled equipment clearing is estimated on the	LA IDA	1 70
	EOUISTAR CHEMICALS						Volatile Organic Compounds	total process vessel volume in the unit and a BACT		
TX-0865	CHANNELVIEW COMPLEX	TX	9/9/2019	Equipment MSS	64.003		(VOC)	concentration of 10,000 ppmv to opening	LAER	1 0
174-0003	PROPANE	124	3/3/2013	Equipment Wiss	01.003		(100)	concentration of 10,000 ppinv to opening	L. I.S.K	<u> </u>
	DEHYDROGENATION (PDH)						Volatile Organic Compounds			
TX-0884	UNIT	TX	1/24/2020	PROCESS VENTS	64.003		(VOC)	FLARE	LAER	98
124 0004	01111	121	172-172-02-0	TROCESS VENTS	04.003		(100)	Knockout drum to separate liquids and vapors, liquids	E. IER	70
								returned to process, vapors to flare, remaining liquids		
	PROPANE							drained to pan, pumped to vacuum truck; VOC-		
	DEHYDROGENATION (PDH)			MSS EQUIPMENT			Volatile Organic Compounds	containing vessels degassed to flare until less than		1
TX-0884	UNIT	TX	1/24/2020	CLEARING	64 003		(VOC)	10,000 ppmv	LAER	1 0
174-0004	ENTERPRISE PRODUCTS	173	1/24/2020	CELTURING	04.003		(100)	то,ооо ррш у	LALK	
	OPERATING MOUNT BELVIEU			1			Volatile Organic Compounds			
TX-0890	COMPLEX	TX	7/15/2020	Process vents	64 002	normal operations and MSS	(VOC)	flare	LAER	98
1A-0890	COMPLEA	111	//13/2020	Triocess veins	04.003	piorinai operations and iviso	I(AOC)	marc	LAEK	1 98

		FACILITY_	PERMIT_ISSUANCE_		PROCCESS					PERCENT_
RBLCID	FACILITY_NAME	STATE	DATE	PROCESS_NAME	TYPE	PROCESS_NOTES	POLLUTANT	CONTROL_METHOD_DESCRIPTION	CASE-BY-CASE_BASIS	EFFICIENCY
								preparations for equipment openings, storage tank		
								maintenance, vacuum truck operations; controlled landed	·	
								roof operations, with off-float emissions routed to flare;		
								pumping process and residual storage vessel liquids to		
								closed vessels; depressurizing and degassing process		
								equipment and storage vessels to below 10000 ppmv		
								concentrations prior to opening to atmosphere; routing to		
								control the exhaust vapors (>100 ppm) from vacuum		
								trucks in service for materials of vapor pressures greater		
								than 0.50 psia; controlled filling vapors at frac tanks		
	LYONDELL CHEMICAL						Volatile Organic Compounds	(>0.5 psia vapor pressure service) by routing to control;		
TX-0823	BAYPORT CHOATE PLANT	TX	6/7/2017	MSS	64,999		(voc)	control device maintenance.	LAER	
								decoke effluent be controlled by a cyclone separator and		
	GULF COAST GROWTH			Ethylene Plant Pyrolysis			Volatile Organic Compounds	that the exhaust from the cyclone be redirected to the		
TX-0858	VENTURES PROJECT	TX	6/12/2019	Furnace MSS	64 001	decoking operations and hot steam standby.	(VOC)	furnace firebox	BACT-PSD	
1A-0656	GULF COAST GROWTH	1A	0/12/2017	Ethylene Plant Process Vents	04.001	startup and shutdown, when cryogenic separation units have to	Volatile Organic Compounds	Turnace Tirebox	BAC 1-1 3D	+
TX-0858	VENTURES PROJECT	TX	6/12/2019		(2.012	be inventoried or purged	(VOC)	MPGF	BACT-PSD	(
1A-0656	VENTURES PROJECT	1A	6/12/2019	MSS	05.012		(VOC)	MPGF	BAC1-PSD	- '
						planned start-up and shut-down of the plant during times when				
						the thermal oxidizer is down for maintenance (at these times the				
	GULF COAST GROWTH			l		vent stream contains a level of oxygen that makes it unsafe to	Volatile Organic Compounds		L	
TX-0858	VENTURES PROJECT	TX	6/12/2019	MEG Plant Process Vents MSS	64.003	direct to the flare stack	(VOC)	minimize time	BACT-PSD	
								The uncontrolled equipment clearing is estimated on the		
	EQUISTAR CHEMICALS						Volatile Organic Compounds	total process vessel volume in the unit and a BACT		
TX-0865	CHANNELVIEW COMPLEX	TX	9/9/2019	Equipment MSS	64.003		(VOC)	concentration of 10,000 ppmv to opening	LAER	
	PORT ARTHUR ETHANE			MSS - Ethylene plant cracking			Volatile Organic Compounds			
TX-0876	CRACKER UNIT	TX	2/6/2020	furnaces	64.001		(VOC)	good combustion practices and the use of gaseous fuel	BACT-PSD	
	PORT ARTHUR ETHANE			MSS (plant turnarounds and			Volatile Organic Compounds	Degassing of process vessels may use the plant flare system or a temporary control device. Process vessels must be degassed to an appropriate control device until the measured VOC concentration in the process vessel is verified to be less than 10,000 ppmv VOC or 10% of the LEL of a representative compound. Process vessels containing no more than 50 lb VOC for which a connection to a control device is not available may be		
TX-0876	CRACKER UNIT	TX	2/6/2020	routine maintenance)	64,003		(voc)	opened to the atmosphere without any prior control.	BACT-PSD	9
				,				Knockout drum to separate liquids and vapors, liquids		
		1					[returned to process, vapors to flare, remaining liquids	1	
	PROPANE	1					[drained to pan, pumped to vacuum truck; VOC-	1	1
	DEHYDROGENATION (PDH)	1		MSS EQUIPMENT			Volatile Organic Compounds	containing vessels degassed to flare until less than	1	1
TX-0884	UNIT	TX	1/24/2020	CLEARING	64.003		(VOC)	10,000 ppmv	LAER	1
		1	1,24/2020		5005		1			1
								Degassing of process vessels may use the plant flare system or a temporary control device. Process vessels must be degassed to an appropriate control device until		
	DIAMOND GREEN DIESEL						Volatile Organic Compounds	the measured VOC concentration in the process vessel is verified to be less than 10,000 ppmv VOC or 10% of the LEL of a representative compound. Process vessels containing no more than 50 lb VOC for which a connection to a control device is not available may be		
*TY_0005	PORT ARTHUR FACILITY	TX	9/16/2020	PROCESS VENT MSS	64.003	<u> </u>	(VOC)	opened to the atmosphere without any prior control.	BACT-PSD	

		FACILITY	PERMIT_ISSUANCE_		PROCCESS					PERCENT_EFF
RBLCID	FACILITY_NAME	STATE	DATE	PROCESS_NAME	TYPE	PROCESS_NOTES	POLLUTANT	CONTROL_METHOD_DESCRIPTION	CASE BY CASE BASIS	ICIENCY
	_			SUBMERGED ETHANOL						
	CONSOLIDATED TERMINALS			BARGE LOADOUT			Volatile Organic Compounds	ADSORPTION/ABSORPTION HYDROCARBON		
IN-0131	AND LOGISTICS COMPANY	IN	2/7/2011	OPERATIONS	64.005		(VOC)	VAPOR RECOVERY SYSTEM	OTHER CASE-BY-CASE	98
		L.					Volatile Organic Compounds		n . om non	
LA-0277	COMONIMER-1 UNIT	LA	9/1/2016	Product Loading LR	64,005	LAD A DEODUCT TO TAKE CALCAVE	(VOC)	Controlled by flares (Ethylene Unit)	BACT-PSD	0
						LAB-2 PRODUCT: 73.7 MM GALS/YR HEAVY PARAFFIN: 17.0 MM GALS/YR				
	LAKE CHARLES CHEMICAL					HEAVY PARAFFIN: 17.0 MM GALS/YR	Volatile Organic Compounds	Best maintenance practices consistent with Sasol's		
LA-0290	COMPLEX GTL LAB-2 UNIT	LA	5/22/201/	Loading Rack (EQT 624)	64.005	OPERATING TIME = 3943 HR/YR	(VOC)	written plan developed pursuant to LAC 33:III.2113	BACT-PSD	
LA-0290	COMPLEX GIE LAB-2 CIVII	LA	3/23/2019	Loading Rack (EQT 024)	04,003	OFERATING TIME - 3943 TIC TR	(voc)	written plan developed pursuant to EAC 33.III.2113	BAC1-F3D	
	LAKE CHARLES CHEMICAL						Volatile Organic Compounds	Best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	LA	5/23/2014	Base Oils - Loading (EQT 835)	64 005	HOURLY THROUGHPUT IS 218,700 GALS/HR.	(VOC)	written plan developed pursuant to LAC 33:III.2113	BACT-PSD	
231	COM ELST OF E CIVI	12.1	5,25,201	Dusc Oils Louding (EQ1 033)	01,002	THROUGHPUT IS PER BERTH.	(,00)	Without plan developed parsaunt to 22 to 35.11.2115	B.I.C. I.O.D	
	LAKE CHARLES CHEMICAL			Diesel Berth 1 & Diesel Berth 1 & Diesel Berth 1		HOURLY THROUGHPUT IS 136,856 GALS/HR PER	Volatile Organic Compounds	Best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	LA	5/23/2014		64.005	BERTH.	(VOC)	written plan developed pursuant to LAC 33:III.2113	BACT-PSD	0
				1				<u> </u>		
	LAKE CHARLES CHEMICAL			Naphtha Berth 1 & Damp; 2			Volatile Organic Compounds			
LA-0291	COMPLEX GTL UNIT	LA	5/23/2014	Loading (EQT 831 & amp; 833)	64.005	THROUGHPUT IS PER BERTH.	(VOC)	Vapor combustor	BACT-PSD	0
	LAKE CHARLES CHEMICAL									
	COMPLEX GUERBET			Guerbet Truck and Railcar			Volatile Organic Compounds	Best maintenance practices consistent with Sasol's		
LA-0298	ALCOHOLS UNIT	LA	5/23/2014	Loading (EQT 769)	64.005		(VOC)	written plan developed pursuant to LAC 33:III.2113	BACT-PSD	0
	LAKE CHARLES CHEMICAL									
	COMPLEX ETHOXYLATION						Volatile Organic Compounds	Best maintenance practices consistent with Sasol's		
LA-0299	UNIT	LA	5/23/2014	ETO Loading Rack (EQT 1103) 64.005	Maximum operating rate = 1000 gals/min	(VOC)	written plan developed pursuant to LAC 33:III.2113	BACT-PSD	0
	LAKE CHARLES CHEMICAL									
	COMPLEX ETHOXYLATION			Alcohol Loading Rack (EQT			Volatile Organic Compounds	Best maintenance practices consistent with Sasol's		
LA-0299	UNIT	LA	5/23/2014	1104)	64.005	Maximum operating rate = 420 gals/min	(VOC)	written plan developed pursuant to LAC 33:III.2113	BACT-PSD	0
						Includes the following sources:				
	L					Propylene Refrig Unloading Line (ETH2-PRUL, EQT 1118)				
	LAKE CHARLES CHEMICAL	l				PSL Loading Rack (ETH2-PSLLR, EQT 1119)	Volatile Organic Compounds			_
LA-0301	COMPLEX ETHYLENE 2 UNIT	LA	5/23/2014	Loading Operations	64.005	PSL Railcar Samples (ETH2-PSLRS, EQT 1120)	(VOC)	Flare	BACT-PSD	0
	LAVE CHARLES CHENGAL						VI. 7 0 1 0 1			
LA-0301	LAKE CHARLES CHEMICAL COMPLEX ETHYLENE 2 UNIT		5/22/2014	Railcar Loading (EQT 983)	64.005		Volatile Organic Compounds (VOC)	Thermal oxidation	BACT-PSD	
LA-0301	COMPLEX ETHYLENE 2 UNIT	LA	3/23/2014	Rancar Loading (EQ1 983)	64,003		(VOC)	I nermai oxidation	BAC1-PSD	- 0
	LAKE CHARLES CHEMICAL						Volatile Organic Compounds	Best maintenance practices consistent with Sasol's		
LA-0302	COMPLEX EO/MEG UNIT	LA	5/22/2014	Railcar Loading (EQT 1014)	64.005		(VOC)	written plan developed pursuant to LAC 33:III.2113	BACT-PSD	
LA-0302	LAKE CHARLES CHEMICAL	LA	3/23/2014	Kancar Loading (EQT 1014)	04,003		(VOC)	written pian developed pursuant to LAC 55.III.2115	BAC1-PSD	- 0
	COMPLEX ZIEGLER ALCOHOL			Alcohol Loading Rack (EQT			Volatile Organic Compounds			
LA-0303	UNIT	LA	5/23/2014		64.005		(VOC)	Carbon adsorption	BACT-PSD	
	LAKE CHARLES CHEMICAL	1	5,25/2014	1/	01,000		1/			
	COMPLEX ZIEGLER ALCOHOL			Loading Rack Operations (EQT	, [Volatile Organic Compounds	Best maintenance practices consistent with Sasol's		
LA-0303	UNIT	LA	5/23/2014		64.005		(VOC)	written plan developed pursuant to LAC 33:III.2113	BACT-PSD	0
				<u> </u>			Volatile Organic Compounds			1
*LA-0315	G2G PLANT	LA	5/23/2014	Methanol Loading	64.005		(VOC)	Water Scrubber	BACT-PSD	0
	LAKE CHARLES CHEMICAL									
	COMPLEX - COMONOMER-1				1		Volatile Organic Compounds			
LA-0319	UNIT	LA	9/1/2016	Product Loading LR	64.005		(VOC)	Closed vent and routing to the flares (@ Ethylene Unit)	BACT-PSD	0
	LAKE CHARLES CHEMICAL									
	COMPLEX - COMONOMER-1						Volatile Organic Compounds			
LA-0319	UNIT	LA	9/1/2016	Raw Material Unloading	64.005		(VOC)		BACT-PSD	0
	GULF COAST METHANOL						Volatile Organic Compounds			
*LA-0346	COMPLEX	LA	1/4/2018	marine vessels loading	64.005		(VOC)	Wet Scrubber	BACT-PSD	98
				Railcar / Truck Loading Area	1		Volatile Organic Compounds			
*LA-0351	LAKE CHARLES FACILITY	LA	2/2/2018	(EQT0023)	64.005		(VOC)	Route to a flare	BACT-PSD	1 0

		FACILITY_	PERMIT_ISSUANCE_		PROCCESS					PERCENT_EFF
RBLCID	FACILITY_NAME	STATE	DATE	PROCESS_NAME	TYPE	PROCESS_NOTES	POLLUTANT	CONTROL_METHOD_DESCRIPTION	CASE-BY-CASE_BASIS	ICIENCY
								Thermal oxidizer (TO) achieving a destruction efficiency		
								of >99.5%.		
								The TO controlling heavy and light pygas railcar loading operations is permitted as a separate and individual		
								emissions unit (emissions unit P001 or P002). For		
								efficient permitting structure, the applicable operational		
								restrictions, monitoring, record keeping, reporting, and		
								testing associated with TO control are contained within		
								the requirements of emissions unit P001 and P002.		
								A separate emissions unit (P807) associated with fugitive		
								leaks of VOC, HAP*, VHAP/Benzene*, and GHGs*		
								from all component equipment at the facility subject to		
								the leak control and repair regulations above has been		
								established. For efficient permitting structure, the applicable requirements (limitations, operational		
								restrictions, monitoring, record keeping, reporting, and		
								testing) associated with equipment leak control and		
								repair for VOC, HAP*, VHAP/Benzene*, and GHGs*		
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	ОН	12/21/2016	Light and Heavy Pygas Railcar Loading (J001)	64.005	Loading of railcars (2 loading arms) with light and heavy pygas controlled by the OSBL thermal oxidizer (P001 or P002).	Volatile Organic Compounds (VOC)	are contained within the requirements of emissions unit	BACT-PSD	99.5
On-0378	COMPLEX	On	12/21/2016	Loading (1001)	04,003	controlled by the OSBE thermal oxidizer (Poor of Pooz).	(VOC)	Fabric filtration at 0.002 gr/dscf for PE Railcar Loading	DACI-P3D	99,3
								Bin (PE1-21), PE Railcar Loading Bin (PE2-21), PE		
								Railcar Loading (PE1-22), and PE Railcar Loading (PE2-		
	personal personal security and a			LIDDED II I I I		District Action of the Company	B - 1 101 10	22).		
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	ОН	12/21/2018	HDPE Railcar Loading 1	64.005	Railcar loading of high-density polyethylene (HDPE) pellets controlled with baghouse	Particulate matter, total < 10 µ (TPM10)	Fabric filtration at 0.001 gr/dscf for the pellet cleaning package vent (PE-RPC).	BACT-PSD	
011-0376	COMPLEX	OII	12/21/2016	(1 701)	04.000	Controlled with bagnouse	Αμ (11 Μ10)	Fabric filtration at 0.002 gr/dscf for PE Railcar Loading	DACI-13D	1
								Bin (PE1-21), PE Railcar Loading Bin (PE2-21), PE		
								Railcar Loading (PE1-22), and PE Railcar Loading (PE2-		
	PTTGCA PETROCHEMICAL			HDPE Railcar Loading 1		Bailean landing of high description about the land (UDDE) well at	Particulate matter, total < 2.5	22).		
OH-0378	COMPLEX	ОН	12/21/2018		64 005	Railcar loading of high-density polyethylene (HDPE) pellets controlled with baghouse	Âμ (TPM2.5)	Fabric filtration at 0.0005 gr/dscf for the pellet cleaning package vent (PE-RPC).	BACT-PSD	
011 0570	COM ELM	0	12,21,2010	(1501)	01.002	controlled with oughouse	πμ (11112.5)	Fabric filtration at 0.002 gr/dscf for PE Railcar Loading	Bite 1 10B	-
								Bin (PE1-21), PE Railcar Loading Bin (PE2-21), PE		
								Railcar Loading (PE1-22), and PE Railcar Loading (PE2-		
	PTTGCA PETROCHEMICAL			HDPE Railcar Loading 1		Railcar loading of high-density polyethylene (HDPE) pellets		22). Fabric filtration at 0.001 gr PM10/dscf for the pellet		
OH-0378	COMPLEX	ОН	12/21/2018		64.005	controlled with baghouse	Visible Emissions (VE)	cleaning package vent (PE-RPC).	BACT-PSD	0
								Fabric filtration at 0.002 gr/dscf for PE Railcar Loading		
								Bin (PE3-17), PE Railcar Loading Bin (PE4-17), PE		
						Railcar loading of linear low-density polyethylene/high density		Railcar Loading (PE3-18), and PE Railcar Loading (PE4- 18).		
	PTTGCA PETROCHEMICAL			HDPE Railcar Loading 2		polyethylene (LLDPE/HDPE) pellets controlled with baghouse.	Particulate matter, total < 10	Fabric filtration at 0.001 gr/dscf for the pellet cleaning		
OH-0378	COMPLEX	OH	12/21/2018		64.005	Loading operations include pellet cleaning package process.	Âμ (TPM10)	package vent (PE-RPC).	BACT-PSD	0
								Fabric filtration at 0.002 gr/dsef for PE Railcar Loading		
								Bin (PE3-17), PE Railcar Loading Bin (PE4-17), PE Railcar Loading (PE3-18), and PE Railcar Loading (PE4-		
						Railcar loading of linear low-density polyethylene/high density		18)		
	PTTGCA PETROCHEMICAL			HDPE Railcar Loading 2		polyethylene (LLDPE/HDPE) pellets controlled with baghouse.	Particulate matter, total < 2.5	Fabric filtration at 0.0005 gr/dscf for the pellet cleaning		
OH-0378	COMPLEX	ОН	12/21/2018	(P902)	64.005	Loading operations include pellet cleaning package process.	Âμ (TPM2.5)	package vent (PE-RPC).	BACT-PSD	0
								Fabric filtration at 0.002 gr/dsef for PE Railcar Loading		
								Bin (PE3-17), PE Railcar Loading Bin (PE4-17), PE Railcar Loading (PE3-18), and PE Railcar Loading (PE4-		
1						Railcar loading of linear low-density polyethylene/high density		18).		
1	PTTGCA PETROCHEMICAL			HDPE Railcar Loading 2		polyethylene (LLDPE/HDPE) pellets controlled with baghouse.		Fabric filtration at 0.001 gr PM10/dscf for the pellet		
OH-0378	COMPLEX	OH	12/21/2018	(P902)	64.005	Loading operations include pellet cleaning package process.	Visible Emissions (VE)	cleaning package vent (PE-RPC).	BACT-PSD	0
								If VOC vapor pressure is greater than 0.10 psia, then		
								vacuum loading is required unless vessel is inerted during loading. Vessel must be leak checked and 5%		
								leakage is assumed. Loading hoses must be drained to		
								vessel being loaded or to a controlled sump. Loading		
my 0.002	CALENIA DADE TERME		.,,	J		Loading emissions must be controlled if the VOC vapor	Volatile Organic Compounds	emissions that require control must be directed to VCUs		
TX-0682	GALENA PARK TERMINAL	TX	6/12/2013	Loading	64.005	pressure is greater than 0.10 psia	(VOC)	that achieve 99.8%DRE	LAER	99.8

		FACILITY	PERMIT_ISSUANCE_		PROCCESS					PERCENT EF
RBLCID	FACILITY_NAME		DATE	PROCESS_NAME	TYPE	PROCESS_NOTES	POLLUTANT	CONTROL_METHOD_DESCRIPTION	CASE-BY-CASE_BASIS	ICIENCY
								Control requirements apply when the product loaded has		
								a vapor pressure of 0.10 psia or greater. Truck and		
								railcar vessels must possess a valid vapor tightness		
								certificate prior to commencement of loading. Barge		
								cargo vessels must be loaded under vacuum. All captured		
	L						L	loading emissions must be routed to a thermal oxidizer		
	LINEAR ALPHA OLEFINS						Volatile Organic Compounds	achieving destruction/removal efficiency (DRE) of		
TX-0811	PLANT	TX	11/3/2016	SOCMI Transfer Operations	64.005	Truck, railcar and barge loading	(VOC)	99.9%, or a vapor combustor achieving DRE of 99.5%.	LAER	
	ODESSA PETROCHEMICAL						Volatile Organic Compounds			
ΓX-0813	PLANT	TX	11/22/2016	Liquid VOC Laoding	64.005		(VOC)	Regenerative thermal oxidizer	BACT-PSD	
								Materials with vapor pressures > 0.5 psia loaded through		
								submerged or bottom fill lines into pressure rated trucks		
								meeting DOT standards and pressure ratings. Transfer		
								lines equipped with stressed connectors for 100%		
	LYONDELL CHEMICAL						Volatile Organic Compounds	capture efficiency. Captured vapors are routed to the		
ΓX-0823	BAYPORT CHOATE PLANT	TX	6/7/2017	LOADING	64,005		(VOC)	flare.	LAER	
								all loading operations will be conducted with submerged		
								fill. Loading activities for liquids with a vapor pressure		1
	INVISTA S.A.R.L. VICTORIA	1					Volatile Organic Compounds	of greater than or equal to 0.50 psia will be vented to the		1
ΓX-0837	PLANT	TX	7/12/2018	LOADING	64.005		(VOC)	ADN Flare.	BACT-PSD	
		1			2002		/	all loading operations will be conducted with submerged		
		1						fill. Loading activities for liquids with a vapor pressure		1
							Volatile Organic Compounds	of greater than or equal to 0.50 psia will be vented to the		
ΓX-0843	VICTORIA PLANT	TX	6/20/2019	LOADING	64.005		(VOC)	ADN Flare.	BACT-PSD	
LX-0043	VICTORIATEANT	IA.	0/30/2018	LOADING	04,003		(voc)	Low vapor pressure (< 0.50 psia) organic liquids	BAC1-13D	_
								For organic liquids with a low volatility the permit		
								requires that loading be conducted using bottom or		
								submerged fill. Add-on control is not required.		
								High vapor pressure (> 0.50 psia) organic liquids		
								For high volatility organic liquids (pyrolysis gasoline),		
								the permit requires that the truck or railcar being loaded		
								be certified as vapor tight (following NSPS XX vapor		
								tightness specifications), and that a closed vent system		
								be used to direct all displaced loading emissions to a		
								properly-operated control device. For loading into		
								railcars, vapor tightness can also be demonstrated		
	GULF COAST GROWTH			Truck and Railcar Liquid			Volatile Organic Compounds	through a valid DOT certification for pressure-rated		
TX-0858	VENTURES PROJECT	TX	6/12/2019	Loading/Unloading Operations	64.005		(VOC)	vessels.	BACT-PSD	
						The thermal oxidizer (EPN PXRLTO) will be authorized in				1
						Permit No. 6056. Displaced loading emissions will be vented to				1
	PORT ARTHUR ETHANE			Truck and railcar loading		the Paraxylene Thermal Oxidizer and only the VOC emissions	Volatile Organic Compounds	Vapor-tightness testing of trucks and railcars, hard-piped		1
TX-0876	CRACKER UNIT	TX	2/6/2020	operations	64.005	from the ethylene unit contribution are included in this permit.	(VOC)	and flanged connections, route vapors to thermal oxidizer	BACT-PSD	99
	PROPANE									
	DEHYDROGENATION (PDH)						Carbon Dioxide Equivalent			1
ΓX-0884	UNIT	TX	1/24/2020	TRUCK LOADING	64.005	pressurized truck transfer location for C5+ solvents	(CO2e)	Flexible hoses with dry-disconnect fittings will be used.	BACT-PSD	1
	PROPANE				1		1` ′	and the state of t		
	DEHYDROGENATION (PDH)	1					Volatile Organic Compounds			1
TX-0884	UNIT	TX	1/24/2020	TRUCK LOADING	64 005	pressurized truck transfer location for C5+ solvents	(VOC)	Flexible hoses with dry-disconnect fittings will be used.	LAER	1
121 VOOT	CHEVRON PHILLIPS	122	1/24/2020	TROCK LOADING	04,003	pressurized track transfer location for C3+ solvents	(,00)	Control: submerged filling. The emissions from tank	E. E. E.	+
	CHEMICAL SWEENY	1		Unit 81 Truck Loading (EPN			Volatile Organic Compounds	truck loading will be routed to the Unit 81 flare (EPN 81-		1
TX-0894	CHEMICAL SWEENY COMPLEX	TX	10/30/2020	LOADRACK, 81-97-9611)	64.005		(VOC)		LAER	
A-0894	COMPLEX	11.7	10/30/2020	LUADKACK, 81-97-9611)	64.005		(VOC)	97-9611) with a collection efficiency of 99.2%.	LAER	+
		1						The emissions from railcar loading will be routed to the		1
		1						VCU (EPN VCU-1). A collection efficiency of 100%		
	1	1						will be applied to the railcar loading, as the railcars meet		1
								DOT testing requirements and the connections are		
		1						pressure stressed type connections A vapor combustion		
	CHEVRON PHILLIPS							unit (EPN VCU-1) will be used to control the emissions		
	CHEMICAL SWEENY			Unit 81 Railcar Loading (EPN			Volatile Organic Compounds	generated from the loading of the 1-hexene product into		
ΓX-0894	COMPLEX	TX	10/30/2020	INCH IN	64,005		(VOC)	railcars.	LAER	99

			PERMIT_ISSUANCE_		PROCCESS_					PERCENT_EFF
RBLCID	FACILITY_NAME	STATE	DATE	PROCESS_NAME	TYPE	PROCESS_NOTES	POLLUTANT	CONTROL_METHOD_DESCRIPTION	CASE-BY-CASE_BASIS	ICIENCY
	_									
								The drums and containers will be loaded in an enclosure		
								that meets the current TCEQ BACT for drum filling and		
								will achieve a 100% collection rate while loading. The		
								material has a consistency like wax, and will be splash		
								loaded, as submerged filling could result in line plugging.		
								The thermal oxidizer controlling the emissions from		
								drum and container loading will be designed to have a		
	CHEVRON PHILLIPS							minimum destruction efficiency of 99.9% for VOCs.		
	CHEMICAL SWEENY			MELT Handling and Loading			Volatile Organic Compounds	The cooling of drums and totes will be done in a closed		
TX-0894	COMPLEX	TX	10/30/2020	(EPN MELT)	64.005		(VOC)	vent system.	LAER	99.9
								Vapor-tightness testing of trucks and railcars, hard-piped		
	MOTIVA POLYETHYLENE			TRUCK AND RAILCAR			Volatile Organic Compounds	and flanged connections, route vapors to thermal oxidizer		
*TX-0904	MANUFACTURING COMPLEX	TX	9/11/2020	LOADING	64.005		(VOC)	if VP>0.5psi	BACT-PSD	99.9
								Visual inspections of all lines/connectors prior to		
								hookup; Transfer racks shall be designed such that the		
								total volume of components to be disconnected and		
								vented to the atmosphere following transfer to any		
								transport truck or railcar, including adapters, hoses,		
	DIAMOND GREEN DIESEL					Proposed loading operations include only pressurized loading of	Volatile Organic Compounds	fittings, valves or couplings, does not exceed 1.47 cubic		
*TX-0905	PORT ARTHUR FACILITY	TX	9/16/2020	LOADING	64.005	LPG/propane	(VOC)	feet	BACT-PSD	0

APPENDIX D

EMISSION CALCULATIONS (CONFIDENTIAL)

Emission Calculations

Included in this appendix is calculations for all facilities changing as part of the requested permit amendment.

Date:	_11/23/2020
Permit #:	18978
Company: Equist	ar Chemicals, L.P

	I. Ap	plicant Information				
I acknowledge that I am submitt			and any			
necessary attachments. Except for inputting the requested data and adjusting row height and						
column width, I have not changed the TCEQ application workbook in any way, including but						
not limited to changing formulas			moraamig bac			
A. Company Information	,					
Company or Legal Name:		Equistar Chemicals, LP				
Permits are issued to either the factoring the legal name of the company, co						
legal name with the Texas Secreta			or the permit. VV	wiii voiny the		
https://www.sos.state.tx.us	<u> </u>	•				
Texas Secretary of State Charter/I	Registration					
Number (if given):	_					
B. Company Official Contact Info	ormation: must r	ot be a consultant				
Prefix (Mr., Ms., Dr., etc.):	Mr.					
First Name:	Stephen G					
Last Name:	Goff					
Title:	Complex Manag	jer				
Mailing Address:	P.O. Drawer D					
Address Line 2:						
City:	Deer Park					
State:	TX					
ZIP Code:	77536-1900					
Telephone Number:	713-336-5475					
Fax Number:	713-209-1440					
Email Address:	Stephen.Goff@I	yondellbasell.com				
C. Technical Contact Information	n: This person m	ust have the authority to make bi	nding agreement	s and		
representations on behalf of the ap	oplicant and may	be a consultant. Additional tech	nical contact(s)	can be		
provided in a cover letter.						
Prefix (Mr., Ms., Dr., etc.):	Ms.					
First Name:	Talia					
Last Name:	Sanchez					
Title:	Environmental E	<u> </u>				
Company or Legal Name:	Equistar Chemic	cals LP.				
Mailing Address:	P.O. Drawer D					
Address Line 2:						
City:	Deer Park					
State:	TX					
ZIP Code:	77536-1900					
Telephone Number:	713-767-1028					
Fax Number: 713-209-1440						
Email Address:	Talia.Sanchez@	lyondellbasell.com				
D. Assigned Numbers						
The CN and RN below are assigned						
also assigned if the agency has co						
these numbers have not yet been			e a Core Data Fo	rm with your		
application submittal. See Section						
Enter the CN. The CN is a unique			CN600404705			
body, association, individual, or ot or is affiliated with a regulated enti		ns, operates, is responsible for,	CN600124705			
or is animated with a regulated entit	Ly.					

Date:		11/23/2020	
Perm	nit #:	18978_	
Company: _E	quista	r Chemicals,	L.P

Enter the RN. The RN is a unique agency assigned number given to each person,
organization, place, or thing that is of environmental interest to us and where
regulated activities will occur. The RN replaces existing air account numbers. The
RN for portable units is assigned to the unit itself, and that same RN should be
used when applying for authorization at a different location.

RN100210319

II. Delinquent Fees and Penalties

Does the applicant have unpaid delinquent fees and/or penalties owed to the TCEQ? This form will not be processed until all delinquent fees and/or penalties owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ are paid in accordance with the Delinquent Fee and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at:

No	

https://www.tceq.texas.gov/agency/financial/fees/delin

III. Permit Information

A. Permit and Action Type (multiple may be selected, leave no blanks)

Additional information regarding the different NSR authorizations can be found at: https://www.tceg.texas.gov/permitting/air/guidance/authorize.html

Select from the drop-down the type of action being requested for each permit type. If that permit type does not apply, you MUST select "Not applicable".

Provide all assigned permit numbers relevant for the project. Leave blank if the permit number has not yet been assigned.

Permit Type	Action Type Requested (do not leave blank)	Permit Number (if assigned)
Minor NSR (can be a Title V major source): Not applicable, Initial, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Relocation/Alteration, Change of Location, Alteration, Extension to Start of Construction	Amendment	18978
Special Permit: Not applicable, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
De Minimis: Not applicable, Initial	Not applicable	
Flexible: Not applicable, Initial, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
PSD: Not applicable, Initial, Major Modification	Not applicable	
Nonattainment: <i>Not applicable, Initial, Major</i> <i>Modification</i>	Major Modification	N162
HAP Major Source [FCAA § 112(g)]: <i>Not</i> applicable, <i>Initial, Major Modification</i>	Not applicable	
PAL: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration	Not applicable	
GHG PSD: Not applicable, Initial, Major Modification, Voluntary Update	Not applicable	

Date:		11/23/2020	
Perr	nit #: _	18978	
Company: _E	Equista	r Chemicals, L.P.	

B. MSS Activities			
How are/will MSS activities for sources associated .			
with this project be authorized?	This permit		
, ,			
C. Consolidating NSR Permits			
Will this permit be consolidated into another NSR pe	ermit with this ac	tion?	No
Will NSR permits be consolidated into this permit wi	th this action?		No
Will Nort politics be consolidated into this politic will	tir triio dotioir:		140
D. Incorporation of Standard Permits, Standard E To ensure protectiveness, previously issued authorized			or DRDs)
including those for MSS, are incorporated into a per			
and/or amendment, consolidation (in some cases) m	•	•	
regarding incorporation can be found in 30 TAC § 1	16.116(d)(2), 30	TAC § 116.615(3) and in this me	emo:
https://www.tceq.texas.gov/assets/public/permitting/		spc06.pdf	
Are there any standard permits, standard exemption be incorporated by reference?	is, or PBRs to	No	
be incorporated by reference.			
Are there any PBR, standard exemptions, or standa			
associated to be incorporated by consolidation? Not		.,	
calculations, a BACT analysis, and an impacts analy attached to this application at the time of submittal for		Yes	
authorization to be incorporated by consolidation.	or arry		
If yes, list any PBR, standard exemptions, or standa	rd permits that	OD 450000 OD 450045 DDD 40	20.400
need to be consolidated:	<u> </u>	SP 158696, SP 159015, PBR 16	2490
If yes, are emission calculations, BACT analysis, an	•		
analysis included for each authorization to be conso	-	Yes	
required information is not provided, the authorized	zation will be		
incorporated by reference. E. Associated Federal Operating Permits			
IL. ASSUCIALEU I EUELAI OPELALIIIY FEITIILS			

Date	e:	_11/23/2020	
Pe	rmit #: _	18978	
Company:	Equista	ar Chemicals, L.	P

	General Company: _	Equistar Chemicals,
Is this facility located at a site required to obtain a soperating permit (GOP)?	site operating permit (SOP) or general	Yes
Is a SOP or GOP review pending for this source, a	rea, or site?	Yes
If required to obtain a SOP or GOP , list all associated permit number(s). If no associated permit number has been assigned yet, enter "TBD":	O2223	
D. = 10.		
IV. Facility Loca A. Location	ation and General Information	
County: Enter the county where the facility is physically located.	Harris	
TCEQ Region	Region 12	
County attainment status as of Sept. 23, 2019	Serious Ozone nonattainment	
Street Address:	1515 Miller Cut-Off Road	
it is not in the same county as the facility.	La Porte	
ZIP Code: Include the ZIP Code of the physical facility site, not the ZIP Code of the applicant's mailing address.	77571-9810	
Site Location Description: If there is no street address, provide written driving directions to the site. Identify the location by distance and direction from well-known landmarks such as major highway intersections.		
Use USGS maps, county maps prepared by the Te application such as Google Earth to find the latitude	•	software
Latitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Latitude is the angular distance of a location north of the equator and will always be between 25 and 37 degrees north (N) in Texas.	29:42:36	
Longitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Longitude is the angular distance of a location west of the prime meridian and will always be between 93 and 107 degrees west (W) in Texas.	-95:04:17	
Is this a project for a lead smelter, concrete crushin facility?	ng facility, and/or a hazardous waste managem	ent No
B. General Information		
Site Name:	Equistar Chemicals La Porte Complex	
Area Name: Must indicate the general type of operation, process, equipment or facility. Include numerical designations, if appropriate. Examples are Sulfuric Acid Plant and No. 5 Steam Boiler. Vague names such as Chemical Plant are not acceptable.	Equistar Chemicals, LP, QE1 Unit	
Are there any schools located within 3,000 feet of	No	

Version 4.0 Page 4

the site boundary?

Date	:	_11/23/2020	
Per	mit #: _	18978_	
Company: _	Equista	ar Chemicals,	L.P

0.0.4.11.5.32			
C. Portable Facility		Damaanant	
Permanent or portable facility?		Permanent	
D. Industry Type			
Principal Company Product/Busine		Organic Chemical Manufacturing	
A list of SIC codes can be found a		organio onomical manaractaring	
https://www.naics.com/sic-codes-ii		n/	
Principal SIC code:	riddott y drilldowr	2869	
NAICS codes and conversions bet	tween NAICS an		
https://www.census.gov/eos/www/			
Principal NAICS code:	<u> </u>	325199	
E. State Senator and Representa	ative for this site		
		e is not compatible to Internet Explorer):	
https://wrm.capitol.texas.gov/	•	,	
State Senator:		Larry Taylor	
District:		11	
State Representative:		Mary Ann Perez	
District:		144	
	V. F	Project Information	
A. Description			
Provide a brief description of the		lesting to authorize the additional acetylene flow	
project that is requested. (Limited		ARU flare and update the NOx and CO emission	
to 500 characters).) flare study in accordance with TCEQ guidance	
	updating the ARU flare DRE from 99.5% to 99% and 98%, increasing the pilot gas		
	flow, and adding N,N-Dimethylformamide (DMF) sump filling and truck loading emissions.		
B. Project Timing	CITIOSIONO.		
	many projects b	pefore beginning construction. Construction is be	roadly interpreted
		ration. Enter the date as "Month Date, Year" (e.	
Designate of Operations	December 1 00	204	
Projected Start of Construction:	December 1, 20		
Projected Start of Operation:	December 1, 20	J2 I	
C. Enforcement Projects	ar related to an a	agangy investigation, nation of violation, or	
enforcement action?	or related to, arra	agency investigation, notice of violation, or	No
emorcement action:			
D. Operating Schedule			
Will sources in this project be auth	orized to operate	e 8760 hours per vear?	Yes
vviii odaroco in uno project de dati	iorized to operate	e or oo nours per year:	100
			_
		pplication Materials	
	•	nd operation procedures contained in the permit	application shall
be conditions upon which the pern		TAC § 116.116)	
A. Confidential Application Mate			
Is confidential information submitte			Yes
If ves. is each confidential page m	arked "CONFIDE	ENTIAL" in large red letters?	Yes

Date	:	_11/23/2020	
Per	mit #: _	18978	
Company: _	Equista	ar Chemicals, L.P.	

THSC §382.041 requires us not to disclose any information related to manufacturing processes that is marked Confidential. Mark any information related to secret or proprietary processes or methods of manufacture Confidential if you do not want this information in the public file. All confidential information should be separated from the application and submitted as a separate file. Additional information regarding confidential information can be found at:

tps://www.tceq.texas.gov/permitting/air/confidential.html	1
Is the Core Data Form (Form 10400) attached?	No
tps://www.tceq.texas.gov/assets/public/permitting/centralregistry/10400.docx	
Is a current area map attached?	Yes
the area map a current map with a true north arrow, an accurate scale, the entire plant property, e location of the property relative to prominent geographical features including, but not limited to, ghways, roads, streams, and significant landmarks such as buildings, residences, schools, parks, ospitals, day care centers, and churches?	Yes
oes the map show a 3,000-foot radius from the property boundary?	Yes
Is a plot plan attached?	Yes
pes your plot plan clearly show a north arrow, an accurate scale, all property lines, all emission pints, buildings, tanks, process vessels, other process equipment, and two bench mark locations?	Yes
oes your plot plan identify all emission points on the affected property, including all emission points uthorized by other air authorizations, construction permits, PBRs, special permits, and standard ermits?	Yes
d you include a table of emission points indicating the authorization type and authorization entifier, such as a permit number, registration number, or rule citation under which each emission bint is currently authorized?	Yes
Is a process flow diagram attached?	Yes
the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw aterials to be used in the process; all major processing steps and major equipment items; dividual emission points associated with each process step; the location and identification of all mission abatement devices; and the location and identification of all waste streams (including astewater streams that may have associated air emissions)?	Yes
Is a process description attached?	Yes
bes the process description emphasize where the emissions are generated, why the emissions ust be generated, what air pollution controls are used (including process design features that inimize emissions), and where the emissions enter the atmosphere?	Yes
pes the process description also explain how the facility or facilities will be operating when the aximum possible emissions are produced?	Yes
Are detailed calculations attached? Calculations must be provided for each source with ew or changing emission rates. For example, a new source, changing emission factors, ecreasing emissions, consolidated sources, etc. You do not need to submit calculations for burces which are not changing emission rates with this project. Please note: the preferred rmat is an electronic workbook (such as Excel) with all formulas viewable for review. It can be emailed with the submittal of this application workbook.	Yes
re emission rates and associated calculations for planned MSS facilities and related activities tached?	Yes
Is a material balance (Table 2, Form 10155) attached?	Yes

applications to confirm technical emissions information. Typically this is required for refining and chemical manufacturing processes involving reactions, separations, and blending. It may also be requested by the permit reviewer for other applications. Table 2 should represent the total material balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions.

Date: _		11/23/2020	
Perm	it #:	18978	
Company: _E	quista	r Chemicals, L.P.	

I. Is a list of MSS activities attached?	Yes
Are the MSS activities listed and discussed separately, each complete with the authorization mechanism or emission rates, frequency, duration, and supporting information if authorized by this permit?	Yes
J. Is a discussion of state regulatory requirements attached, addressing 30 TAC Chapters 101, 111, 112, 113, 115, and 117?	Yes
For all applicable chapters, does the discussion include how the facility will comply with the requirements of the chapter?	Yes
For all not applicable chapters, does the discussion include why the chapter is not applicable?	Yes
K. Are all other required tables, calculations, and descriptions attached?	Yes

VII. Signature

The owner or operator of the facility must apply for authority to construct. The appropriate company official (owner, plant manager, president, vice president, or environmental director) must sign all copies of the application. The applicant's consultant cannot sign the application. **Important Note: Signatures must be original in ink, not reproduced by photocopy, fax, or other means, and must be received before any permit is issued.**

The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the project for which application is made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter 382; the Texas Clean Air Act (TCAA); the air quality rules of the Texas Commission on Environmental Quality; or any local governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I understand my signature indicates that this application meets all applicable nonattainment, prevention of significant deterioration, or major source of hazardous air pollutant permitting requirements. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.

Name:	Stephen G. Goff	
Signature:		
	Original signature is required.	
Date:		

Date: ____11/23/2020____ Permit #: ____18978__ Company: _Equistar Chemicals, L.P.__

V. Nonattainment Permits	
	V
Complete the offsets section of the Federal Applicability sheet of this workbook.	Yes
Does the application contain a detailed LAER analysis? (attachment or as notes on the BACT sheet of this workbook)	Yes
Does the application contain an analysis of alternative sites, sizes, production processes, and	
control techniques for the proposed source? The analysis must demonstrate that the benefits of the proposed location and source configuration significantly outweigh the environmental and social costs	No
of that locati+A124on.	

Date: ____11/23/2020____ Permit #: ____18978__ Company: _Equistar Chemicals, L.P.__

	VIII. Federal Regulatory Questions	
Indicate if any of the following regu	irements apply to the proposed facility. Note that some federal regi	ulations apply to
minor sources. Enter all applicable		apply to
A. Title 40 CFR Part 60	•	
Do NSPS subpart(s) apply to a	L.	
facility in this application?	Yes	
List applicable subparts you will		
demonstrate compliance with	Subparts A, Db, Kb, VV, VVa, NNN, and RRR	
(e.g. Subpart M)	,,,,,,	
B Title 40 CFR Part 61		

Date:		_11/23/2020	_	
Pern	nit #: _	18978		
Company: _Equistar Chemicals, L.P				

Do NESHAP subpart(s) apply to a	Yes			
facility in this application?				
List applicable subparts you will				
demonstrate compliance with	Subparts A, J, V, BB, and FF			
(e.g. Subpart BB)	Cubparts A, 0, V, DB, and T			
C. Title 40 CFR Part 63				
Do MACT subpart(s) apply to a	Yes			
facility in this application?	100			
List applicable subparts you will				
demonstrate compliance with	Subparts A, UU, XX, and YY			
(e.g. Subpart VVVV)				
	IX. Emissions Review			
A. Impacts Analysis				
Any change that results in an increase in off-property concentrations of air contaminants requires an air quality				
	n regarding the air quality impacts demonstration must be provided			
	vith all state and federal requirements. Detailed requirements for t	ne information		
	ion are listed on the Impacts sheet of this workbook.			
Does this project require an impac	Yes			
B. Disaster Review				
If the proposed facility will handle sufficient quantities of certain chemicals which, if released accidentally, would				
cause off-property impacts that could be immediately dangerous to life and health, a disaster review analysis may be				
required as part of the application. Contact the appropriate NSR permitting section for assistance at (512) 239-1250.				
Additional Guidance can be found at:				
https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/disrev-factsheet.pdf				
Does this application involve any a	ir contaminants for which a disaster review is required?	No		
C. Air Pollutant Watch List				
Certain areas of the state have concentrations of specific pollutants that are of concern. The TCEQ has designated				
these portions of the state as watch list areas. Location of a facility in a watch list area could result in additional				
restrictions on emissions of the affected air pollutant(s) or additional permit requirements. The location of the areas				
and pollutants of interest can be found at:				
https://www.tceq.texas.gov/toxicology/apwl/apwl.html				
Is the proposed facility located in a	No			
D. Mass Emissions Cap and Trade				
Is this facility located at a site within the Houston/Galveston nonattainment area (Brazoria,				
Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller Counties)?				
Is Mass Emissions Cap and Trade applicable to the new or modified facilities?				

Date:	1	1/23/2020	
Perm	nit #:	18978	
Company: _E	quistar	Chemicals, L.	P

Permit primary industry (must be selected for workbook to function)

Chemical / Energ

Action Requested (only 1 action per FIN)	Include these emissions in annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)
New/Modified	Yes	QE3050B	QE3050B	ARU Flare	CO	21	8.98
					NOx	4.04	1.73
					SO2	0.1	0.1
					VOC	15.02	1.38
New/Modified	Yes	QE3050MAINT	QE3050MAINT	ARU Flare Maintenance	СО	50.65	1.27
					NOx	9.74	0.24
					SO2	0.1	0.1
					VOC	78.63	1.97
New/Modified	Yes	QELOAD_ARU	QELOAD_ARU	DMF Loading Fugitives	VOC		
Consolidate	Yes	QEH2FLARE	QEH2FLARE	Hydrogen Flare	CO	59.16	35.5
					NOx	34.87	20.92
					SO2	5.99	3.59
					VOC	0.01	0.01
Consolidate	Yes	QEFUG	QEFUG	Process Fugitives	VOC	19.67	86.07
					NH3	0.12	0.54
					Chlorine	0.04	0.17
Consolidate	Yes	QEANALYZ5	QEANALYZ5	Main Flare Analyzer	VOC		
Consolidate	Yes	QE1001B	QE1001B	Furnace 1	NOx	30.3	121.26
					CO	24.71	31.34
					SO2	0.3	1.31
					VOC	0.7	3
					PM	1	3.5
					PM10	1	3.5
					PM2.5	1	3.5
Consolidate	Yes	QE1002B	QE1002B	Furnace 2	NOx	30.3	121.26
					CO	24.71	31.34
					SO2	0.3	1.31
					VOC	0.7	3
					PM	1	3.5
					PM10	1	3.5
					PM2.5	1	3.5
Consolidate	Yes	QE1003B	QE1003B	Furnace 3	NOx	30.3	121.26

Action Requested (only 1 action per FIN)	Include these emissions in annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)
					CO	24.71	31.34
					SO2	0.3	1.31
					VOC	0.7	3
					PM	1	3.5
					PM10	1	3.5
					PM2.5	1	3.5
Consolidate	Yes	QE1004B	QE1004B	Furnace 4	NOx	30.3	121.26
					CO	24.71	31.34
					SO2	0.3	1.31
					VOC	0.7	3
					PM	1	3.5
					PM10	1	3.5
					PM2.5	1	3.5
Consolidate	Yes	QE1005B	QE1005B	Furnace 5	NOx	30.3	121.26
					CO	24.71	31.34
					SO2	0.3	1.31
					VOC	0.7	3
					PM	1	3.5
					PM10	1	3.5
					PM2.5	1	3.5
Consolidate	Yes	QE1006B	QE1006B	Furnace 6	NOx	30.3	121.26
					CO	24.71	31.34
					SO2	0.3	1.31
					VOC	0.7	3
					PM	1	3.5
					PM10	1	3.5
					PM2.5	1	3.5
Consolidate	Yes	QE1007B	QE1007B	Furnace 7	NOx	30.3	121.26
					CO	24.71	31.34
					SO2	0.3	1.31
					VOC	0.7	3
					PM	1	3.5
					PM10	1	3.5
	N/	0540005	0540005		PM2.5	1	3.5
Consolidate	Yes	QE1008B	QE1008B	Furnace 8	NOx	30.3	121.26
					CO	24.71	31.34

Action Requested (only 1 action per FIN)	Include these emissions in annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)
					SO2	0.3	1.31
					VOC	0.7	3
					PM	1	3.5
					PM10	1	3.5
					PM2.5	1	3.5
Consolidate	Yes	QE1009B	QE1009B	Furnace 9	NOx	31.75	126.58
					CO	33.92	34.45
					SO2	0.36	1.56
					VOC	0.83	3.63
					PM	2.1	6.57
					PM10	2.1	6.57
					PM2.5	2.1	6.57
Consolidate	Yes	QE1010B	QE1010B	Furnace 10	NOx - Routine	9	24.09
					NOx - Decoke/Hot Standby	12.5	
					NOx (MSS)	14	
					CO	20.36	81.76
					SO2	0.35	1.42
					VOC	0.6	2.41
					PM	4.3	17.25
					PM10	4.3	17.25
					PM2.5	4.3	17.25
					NH3	3.11	13.62
Consolidate	Yes	QE1011B	QE1011B	Furnace 11	NOx - Routine	9	24.09
					NOx - Decoke/Hot Standby	12.5	
					NOx (MSS)	14	
					CO	20.36	81.76
					SO2	0.35	1.42
					VOC	0.6	2.41
					PM	4.3	17.25
					PM10	4.3	17.25
					PM2.5	4.3	17.25
					NH3	3.11	13.62

Action Requested (only 1 action per FIN)	Include these emissions in annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)
Not New/Modified	Yes	QE5802UA	QE5802UA	Boiler A	NOx	22.5	89.7
					CO	20.14	30.27
					SO2	0.14	0.61
					VOC	1.43	1.91
					PM	0.34	1.49
					PM10	0.34	1.49
					PM2.5	0.34	1.49
Not New/Modified	Yes	QE5802UB	QE5802UB	Boiler B	NOx	22.5	89.7
_					CO	20.14	30.27
					SO2	0.14	0.61
					VOC	1.43	1.91
					PM	0.34	1.49
					PM10	0.34	1.49
					PM2.5	0.34	1.49
Not New/Modified	Yes	QE6410F	QE6410F	Pyrolysis Gasoline IFR Tank	VOC	2.12	5.95
Not New/Modified	Yes	QE2410F	QE2410F	Wash Oil Drum	VOC	0.52	0.02
Not New/Modified	No	QE1416F	QE1416F	Decoking Drum	CO	877.9	
					PM	16.9	
					PM10	16.9	
					PM2.5	14.03	
					VOC	2.05	
Not New/Modified	No	QE1423F	QE1423F	Decoking Drum	CO	877.9	
					PM	16.9	
					PM10	16.9	
					PM2.5	14.03	
					VOC	2.05	
Not New/Modified	Yes	QE1416F and QE1423F	QE1416F and QE1423F	Decoking Drum	со		388.47
					PM		7.36
					PM10		7.36
					PM2.5		4.98
					VOC		3.78
Not New/Modified	Yes	QE1416FB	QE1416FB	Decoking Drum	CO	745	222
					PM	2.85	0.37

Date: ____11/23/2020_____ Permit #: ____18978____ Company: _Equistar Chemicals, L.P.__

Action Requested (only 1 action per FIN)	Include these emissions in annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)
					PM10	2.85	0.37
					PM2.5	1.94	0.25
					VOC	0.04	0.02
Not New/Modified	Yes	QE7801U	QE7801U	Cooling Tower	VOC	7.88	5.34
					PM	2.67	11.69
					PM10	1.31	5.73
					PM2.5	0.01	0.02
Not New/Modified	Yes	QE3418F	QE3418F	MAPD Decoke Pot	CO	17.3	0.31
Not New/Modified	Yes	QE8050B	QE8050B	Elevated Flare	CO	266.8	87.66
					NOx	85.21	30.11
					SO2	81.32	4.25
					VOC	50.83	11.89
Not New/Modified	Yes	QE8050MAINT	QE8050BMAINT	Elevated Flare Maintenance	со	82.5	0.3
					NOx	16.16	0.1
					SO2	101.78	0.06
					VOC	58.18	0.15
Not New/Modified	Yes	QE7412F	QE7412F	Wash Oil Tank	voc	0.7	0.08
Not New/Modified	Yes	QELOAD	QELOAD	Organic Loading	VOC	0.06	0.03
Not New/Modified	Yes	QESTORE	QESTORE	Organic Storage	voc	1.33	1.01
Not New/Modified	Yes	QE8001A	QE8001A	Wastewater System	VOC	0.35	1.55
Not New/Modified	Yes	QELAB	QELAB	Sampling	VOC	7.04	2.25
Not New/Modified	Yes	QEANALYZ2	QEANALYZ2	Main Flare HRVOC Analyzer	NOx	0.01	0.01
					CO	0.01	0.01
					VOC	0.01	0.01
Not New/Modified	Yes	QEANALYZ4	QEANALYZ4	Furnace 10-11 Analyzers	NOx	0.01	0.01
					CO	0.01	0.01
					VOC	0.04	0.17
Not New/Modified	Yes	QEUNIT	QEUNIT	Dock Thermal Oxidizer	NOx	14.68	4.7
					CO	17.73	6.25
					VOC	23.77	7.22

Action Requested (only 1 action per FIN)	Include these emissions in annual (tpy) summary?	Facility ID Number (FIN)	Emission Point Number (EPN)	Source Name	Pollutant	Current Short- Term (lb/hr)	Current Long- Term (tpy)
					PM	0.01	0.02
					PM10	0.01	0.02
					PM2.5	0.01	0.02
Not New/Modified	Yes	PW7614JA	PW7614JA	Emergency Engine	NOx	15.1	1.7
					CO	3.25	0.37
					VOC	1.22	0.14
					SO2	1	0.11
					PM	1.07	0.12
					PM10	1.07	0.12
					PM2.5	1.07	0.12
Not New/Modified	Yes	PW7605JB	PW7605JB	Emergency Engine	NOx	15.84	6.94
					CO	3.63	1.59
					VOC	0.47	0.2
					SO2	5.34	2.34
					PM	0.46	0.2
					PM10	0.46	0.2
					PM2.5	0.46	0.2
Not New/Modified	Yes	PW7605JC	PW7605JC	Emergency Engine	NOx	15.84	6.94
					CO	3.63	1.59
					VOC	0.47	0.2
					SO2	5.34	2.34
					PM	0.46	0.2
					PM10	0.46	0.2
					PM2.5	0.46	0.2
Not New/Modified	Yes	7407F	7407F	Sulfuric Acid Tank	H2SO4	0.01	0.01
Not New/Modified	Yes	7701LL3F	7701LL3F	Sulfuric Acid Tank	H2SO4	0.01	0.01
Not New/Modified	Yes	QEPGCIN	QEPGCIN	PGC Seal Oil/Lube Oil	voc	0.32	1.38
Not New/Modified	Yes	QENH3SC	QENH3SC	Ammonia Clearing	NH3	1	0.01

Date	e:	11/23/2020	
Pe	rmit #:	18978	
Company:	_Equist	ar Chemicals, L.f	٥

Facility ID Number (FIN)	Consolidated Current Short- Term (lb/hr)	Consolidated Current Long- Term (tpy)	Proposed Short Term (lb/hr)	·Proposed Long· Term (tpy)	(lb/hr)	Long-Term Difference (tpy)
QE3050B			69.61	22.72	48.61	13.74
			14.11	4.5	10.07	2.77
			0.1	0.1	0	0
			51.64	4.34	36.62	2.96
QE3050MAINT			88.42	49.6	37.77	48.33
			17.35	10.12	7.61	9.88
			0.1	0.1	0	0
			106.06	44.82	27.43	42.85
QELOAD_ARU			0.00648	0.0000202	0.0065	0.0001
QEH2FLARE	34.6801	20.8101	93.84	56.31	0	0
	-2	-1.2	32.87	19.72	0	0
			5.99	3.59	0	0
			0.01	0.01	0	0
QEFUG	0.0854	0.3739	19.7554	86.4439	0	0.0001
			0.12	0.54	0	0
			0.04	0.17	0	0
QEANALYZ5	<0.01	<0.01	<0.01	<0.01	0	0
QE1001B			30.3	121.26	0	0
			24.71	31.34	0	0
			0.3	1.31	0	0
			0.3	0.75	-0.4	-2.25
			1	3.5	0	0
			1	3.5	0	0
			1	3.5	0	0
QE1002B			30.3	121.26	0	0
			24.71	31.34	0	0
			0.3	1.31	0	0
			0.3	0.75	-0.4	-2.25
			1	3.5	0	0
			1	3.5	0	0
			1	3.5	0	0
QE1003B			30.3	121.26	0	0

Facility ID Number (FIN)	Consolidated Current Short- Term (lb/hr)	Consolidated Current Long- Term (tpy)	Proposed Short Term (lb/hr)	Proposed Long- Term (tpy)	Short-Term Difference (lb/hr)	Long-Term Difference (tpy)
			24.71	31.34	0	0
			0.3	1.31	0	0
			0.3	0.75	-0.4	-2.25
			1	3.5	0	0
			1	3.5	0	0
			1	3.5	0	0
QE1004B			30.3	121.26	0	0
			24.71	31.34	0	0
			0.3	1.31	0	0
			0.3	0.75	-0.4	-2.25
			1	3.5	0	0
			1	3.5	0	0
			1	3.5	0	0
QE1005B			30.3	121.26	0	0
			24.71	31.34	0	0
			0.3	1.31	0	0
			0.3	0.75	-0.4	-2.25
			1	3.5	0	0
			1	3.5	0	0
			1	3.5	0	0
QE1006B			30.3	121.26	0	0
			24.71	31.34	0	0
			0.3	1.31	0	0
			0.3	0.75	-0.4	-2.25
			1	3.5	0	0
			1	3.5	0	0
			1	3.5	0	0
QE1007B			30.3	121.26	0	0
			24.71	31.34	0	0
			0.3	1.31	0	0
			0.3	0.75	-0.4	-2.25
			1	3.5	0	0
			1	3.5	0	0
			1	3.5	0	0
QE1008B			30.3	121.26	0	0
			24.71	31.34	0	0

Facility ID Number (FIN)	Consolidated Current Short- Term (lb/hr)	Consolidated Current Long- Term (tpy)	Proposed Short Term (lb/hr)	Proposed Long- Term (tpy)	Short-Term Difference (lb/hr)	Long-Term Difference (tpy)
			0.3	1.31	0	0
			0.3	0.75	-0.4	-2.25
			1	3.5	0	0
			1	3.5	0	0
			1	3.5	0	0
QE1009B			31.75	126.58	0	0
			33.92	34.45	0	0
			0.36	1.56	0	0
			0.3	0.75	-0.53	-2.88
			2.1	6.57	0	0
			2.1	6.57	0	0
			2.1	6.57	0	0
QE1010B			9	24.09	0	0
			12.5		0	0
			14		0	0
			20.36	81.76	0	0
			0.35	1.42	0	0
	0.01		0.61	1.5	0.0001	-0.91
			4.3	17.25	0	0
			4.3	17.25	0	0
			4.3	17.25	0	0
			3.11	13.62	0	0
QE1011B			9	24.09	0	0
			12.5		0	0
			14		0	0
			20.36	81.76	0	0
			0.35	1.42	0	0
	0.01		0.61	1.5	0.0001	-0.91
			4.3	17.25	0	0
			4.3	17.25	0	0
			4.3	17.25	0	0
			3.11	13.62	0	0

Facility ID Number (FIN)	Consolidated Current Short- Term (lb/hr)	Consolidated Current Long- Term (tpy)	Proposed Short Term (lb/hr)	·Proposed Long- Term (tpy)	Short-Term Difference (lb/hr)	Long-Term Difference (tpy)
QE5802UA			22.5	89.7	0	0
			20.14	30.27	0	0
			0.14	0.61	0	0
			1.43	1.91	0	0
			0.34	1.49	0	0
			0.34	1.49	0	0
			0.34	1.49	0	0
QE5802UB			22.5	89.7	0	0
			20.14	30.27	0	0
			0.14	0.61	0	0
			1.43	1.91	0	0
			0.34	1.49	0	0
			0.34	1.49	0	0
			0.34	1.49	0	0
QE6410F			2.12	5.95	0	0
QE2410F			0.52	0.02	0	0
QE1416F			877.9		0	0
			16.9		0	0
			16.9		0	0
			14.03		0	0
			2.05		0	0
QE1423F			877.9		0	0
			16.9		0	0
			16.9		0	0
			14.03		0	0
			2.05		0	0
QE1416F and QE1423F				388.47	0	0
				7.36	0	0
				7.36	0	0
				4.98	0	0
				3.78	0	0
QE1416FB			745	222	0	0
			2.85	0.37	0	0

Facility ID Number (FIN)	Consolidated Current Short- Term (lb/hr)	Consolidated Current Long- Term (tpy)	Proposed Short Term (lb/hr)	·Proposed Long· Term (tpy)	Short-Term Difference (lb/hr)	Long-Term Difference (tpy)
			2.85	0.37	0	0
			1.94	0.25	0	0
			0.04	0.02	0	0
QE7801U			7.88	5.34	0	0
			2.67	11.69	0	0
			1.31	5.73	0	0
			0.01	0.02	0	0
QE3418F			17.3	0.31	0	0
QE8050B			266.8	87.66	0	0
			85.21	30.11	0	0
			81.32	4.25	0	0
			50.83	11.89	0	0
QE8050MAINT			82.5	0.3	0	0
			16.16	0.1	0	0
			101.78	0.06	0	0
			58.18	0.15	0	0
QE7412F			0.7	0.08	0	0
QELOAD			0.06	0.03	0	0
QESTORE			1.33	1.01	0	0
QE8001A			0.35	1.55	0	0
QELAB			7.04	2.25	0	0
QEANALYZ2			0.01	0.01	0	0
			0.01	0.01	0	0
			0.01	0.01	0	0
QEANALYZ4			0.01	0.01	0	0
			0.01	0.01	0	0
			0.04	0.17	0	0
QEUNIT			14.68	4.7	0	0
			17.73	6.25	0	0
			23.77	7.22	0	0

Facility ID Number (FIN)	Consolidated Current Short- Term (lb/hr)	Consolidated Current Long- Term (tpy)	Proposed Short Term (lb/hr)	·Proposed Long- Term (tpy)	Short-Term Difference (lb/hr)	Long-Term Difference (tpy)
			0.01	0.02	0	0
			0.01	0.02	0	0
			0.01	0.02	0	0
PW7614JA			15.1	1.7	0	0
			3.25	0.37	0	0
			1.22	0.14	0	0
			1	0.11	0	0
			1.07	0.12	0	0
			1.07	0.12	0	0
			1.07	0.12	0	0
PW7605JB			15.84	6.94	0	0
			3.63	1.59	0	0
			0.47	0.2	0	0
			5.34	2.34	0	0
			0.46	0.2	0	0
			0.46	0.2	0	0
			0.46	0.2	0	0
PW7605JC			15.84	6.94	0	0
			3.63	1.59	0	0
			0.47	0.2	0	0
			5.34	2.34	0	0
			0.46	0.2	0	0
			0.46	0.2	0	0
			0.46	0.2	0	0
7407F			0.01	0.01	0	0
7701LL3F			0.01	0.01	0	0
QEPGCIN			0.32	1.38	0	0
QENH3SC			1	0.01	0	0
					0	0
					0	0
					0	0
					0	0
					0	0

Date:	11/23/2020
Permit #:	18978
Company: _Equist	ar Chemicals, L.P

ed for workbook to

Facility ID Number (FIN)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
QE3050B	Control: Flare	
QE3050MAINT	Control: Flare	
QELOAD_ARU	Loading: Truck	
QEH2FLARE	Control: Flare	
QEFUG	Fugitives: Piping and Equipment Leak	
QEANALYZ5	Other	Analyzer
QE1001B	Furnace	
QE1002B	Furnace	
QE1003B	Furnace Page 21	

Facility ID Number (FIN)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
QE1004B	Furnace	
QE1005B	Furnace	
QE1006B	Furnace	
QE1007B	Furnace	
QE1008B	Furnace	

Facility ID Number (FIN)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
QE1009B	Furnace	
QE1010B	Furnace	
QE1011B	Furnace	

Facility ID Number (FIN)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
QE5802UA	Boiler: Liquid and Gas Fuel, > 40 MMBtu/hr	
QE5802UB	Boiler: Liquid and Gas Fuel, > 40 MMBtu/hr	
QLOCOZOD	Boiler. Elquid and Gus i doi, 2 40 Ministarii	
QE6410F	Storage Tank (4): Floating roof with TVP <11.0 psia	
QE2410F	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
QE1416F	Other	Decoking Drum
QE1423F	Other	Decoking Drum
QE1416F and QE1423F	Other	Decoking Drum
QE 1423F		
QE1416FB	Other	Decoking Drum
QL ITIOI D		Decorning Drufff

Date: ____11/23/2020____ Permit #: ____18978__ Company: _Equistar Chemicals, L.P.__

Facility ID Number (FIN)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
QE7801U	Cooling Tower	
QE3418F QE8050B	Other Control: Flare	Decoking Drum
QE8050MAINT	Control: Flare	
QE7412F	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
QELOAD QESTORE	Loading: Truck Storage Tank (1): Fixed roof with capacity <	
QE8001A	25,000 gal or TVP < 0.50 psia Wastewater Facilities	Compling
QELAB QEANALYZ2	Other Other	Sampling Analyzer
QEANALYZ4	Other	Analyzer
QEUNIT	Control: Oxidizer: Thermal	

Facility ID Number (FIN)	Unit Type (Used for reviewing BACT and Monitoring Requirements)	Unit Type Notes (only if "other" unit type in Column O)
PW7614JA	Engine: Emergency, Diesel	
PW7605JB	Engine: Emergency, Diesel	
PW7605JC	Engine: Emergency, Diesel	
7407F	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
7701LL3F	Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia	
QEPGCIN	Other	PGC Inert gas
QENH3SC	Other	Ammonia Clearing

Date: _____11/23/2020____ Permit #: ____18978___ Company: _Equistar Chemicals, L.P.__

				Emission F	Point Discha	rge Paramete	ers		
EPN	Included in EMEW?	UTM Coordinates Zone	East (Meters)	North (Meters)	Building Height (ft)	Height Above Ground (ft)	Stack Exit Diameter (ft)	Velocity (FPS)	Temperature (°F)
QE3050B	Yes								
QE3050MAINT	Yes								
QELOAD_ARU	Yes								
QEH2FLARE	Yes								
QEFUG	Yes								
QEANALYZ5	Yes								
QE1001B	No	15	300627	3288165	109.875	150	6	41	240
QE1002B	No	15	300627	3288149	109.875	150	6	41	240
QE1003B	No	15	300627	3288141	109.875	150	6	41	240
QE1004B	No	15	300627	3288125	109.875	150	6	41	240
QE1005B	No	15	300627	3288116	109.875	150	6	41	240
QE1006B	No	15	300627	3288101	109.875	150	6	41	240
QE1007B	No	15	300627	3288092	109.875	150	6	41	240
QE1008B	No	15	300627	3288076	109.875	150	6	41	240
QE1009B	No	15	300637	3288068	91.2	210	5.25	63	240
QE1010B	Yes								
QE1011B	Yes								
QE5802UA	No	15	300634	3288218	100	185	5.25	47	325
QE5802UB	No	15	300616	3288218	100	185	5.25	47	325
QE6410F	No	15	300904	3288488	48	48	90	<0.1	110
QE2410F	No	15	300500	3288108	12	12	12	<0.1	
QE1416F	No	15	300636	3288170	140	171	2.5	80	650
QE1423F	No	15	300645	3287994	140	155	3	84.19712	650
QE1416F and QE1423F	No								
QE1416FB	No	15	300656	3287965	140	150	3	161	460

Date	e:	_11/23/2020	
Pe	rmit #: _	18978	
Company: _.	_Equista	ar Chemicals, L.P	

	I. Public Notice Applicability			
A. Application Type		_		
Is this an application for a new or major mo	odification of a PSD (including GHG), Nonattainment, or	HAP permit?	Yes	
Is this an application for a minor permit am	endment?	,	Yes	
Is there any change in character of emission species)?	ons in this application (a new criteria pollutant or a new	VOC or PM	No	
Is there a new air contaminant in this appli	cation?		No	
standardized emission factors, or reduction emissions increase would be the sum of examended permit for each air contaminant. The table below will generate emission income the "yes" and "no" options in column to emissions should be included in these to the "yes". Notes: 1. Emissions of PM, PM10, and/or PM2.5. These emissions will be speciated based on public notice requirements may change during the sum of the s	may have been previously quantified and authorized as on current guidance and policy to demonstrate complian	mended permit. emissions decrea /pes - Emission f cate if a unit's pr PM, PM10,and/o	Thus, the total ases under the Rates" sheet. roposed change or PM2.5.	
All renewals require public notice.				
This row is optional. If you do not think the table below accurately represents public notice applicability increases for your project, provide discussion here (1000 characters).				
Do the facilities handle, load, unload, dry, vegetable fibers (agricultural facilities)?	manufacture, or process grain, seed, legumes, or	No		

Page 1 Version 4.0

Date: _____11/23/2020_____ Permit #: ____18978____ Company: _Equistar Chemicals, L.P.__

Pollutant	Current Long- Term (tpy)	Consolidated Emissions (tpy)	Proposed Long- Term (tpy)	Project Change in Allowable (tpy)	PN Threshold	Notice required?
VOC	167.09	0.38	190.58	23.11	5	Yes
PM	92.01	0.00	92.01	0.00	5	No
PM ₁₀	86.05	0.00	86.05	0.00	5	No
PM _{2.5}	77.84	0.00	77.84	0.00	5	No
NO _x	1349.46	-1.20	1360.91	12.65	5	Yes
CO	1263.54	20.81	1346.42	62.07	50	Yes
SO ₂	28.99	0.00	28.99	0.00	10	No
Pb	0.00	0.00	0.00	0.00	0.6	No
NH3	27.79	0	27.79	0	5	No
Chlorine	0.17	0	0.17	0	5	No
NOx - Routine	48.18	0	48.18	0	5	No
NOx - Decoke/Hot Sta	0	0	0	0	5	No
NOx (MSS)	0	0	0	0	5	No
H2SO4	0.02	0	0.02	0	5	No
* Notice is required for	PM PM10 and F	PM2.5 if one of these	e pollutants is above	the threshold		

^{**} Notice of a GHG action is determined by action type. Initial and major modification always require notice. Voluntary updates require a consolidated notice if there is a change to BACT. Project emission increases of CO2e (CO2 equivalent) are not relevant for determining public notice of GHG permit actions.

C. Is public notice required for this project as represented in this workbook?	Yes
If no, proceed to Section III Small Business Classification.	
Note: public notice applicability for this project may change throughout the technical review.	
D. Are any HAPs to be authorized/re-authorized with this project? The category "HAPs" must	No
be specifically listed in the public notice if the project authorizes (reauthorizes for renewals) any HAP pollutants.	

II. Public Notice Information

Complete this section if public notice is required (determined in the above section) or if you are not sure if public notice is required.

A. Contact Information

Enter the contact information for the **person responsible for publishing.** This is a designated representative who is responsible for ensuring public notice is properly published in the appropriate newspaper and signs are posted at the facility site. This person will be contacted directly when the TCEQ is ready to authorize public notice for the application.

Prefix (Mr., Ms., Dr., etc.):	Ms.
First Name:	Talia
Last Name:	Sanchez
Title:	Environmental Engineer
Company Name:	Equistar Chemicals LP.

Date	e:	11/23/2020_	
Pe	rmit #:	18978_	
Company: .	_Equista	r Chemicals	, L.P

Mailing Address:	P.O. Drawer D
Address Line 2:	
City:	Deer Park
State:	TX
ZIP Code:	77536-1900
Telephone Number:	713-767-1028
Fax Number:	713-209-1440
Email Address:	Talia.Sanchez@lyondellbasell.com
	nical Contact. This is the designated representative who will be listed in the public
notice as a contact for additional informati	on.
Prefix (Mr., Ms., Dr., etc.):	Ms.
First Name:	Talia
Last Name:	Sanchez
Title:	Environmental Engineer
Company Name:	Equistar Chemicals LP.
Mailing Address:	P.O. Drawer D
Address Line 2:	
•	Deer Park
State:	TX
ZIP Code:	77536-1900
Telephone Number:	713-767-1028
Fax Number:	713-209-1440
Email Address:	Talia.Sanchez@lyondellbasell.com

B. Public place

Place a copy of the full application (including all of this workbook and all attachments) at a public place in the county where the facilities are or will be located. You must state where in the county the application will be available for public review and comment. The location must be a public place and described in the notice. A public place is a location which is owned and operated by public funds (such as libraries, county courthouses, city halls) and cannot be a commercial enterprise. You are required to prearrange this availability with the public place indicated below. The application must remain available from the first day of publication through the designated comment period.

If this is an application for a PSD, nonattainment, or FCAA §112(g) permit, the public place must have internet access available for the public as required in 30 TAC § 39.411(f)(3).

If the application is submitted to the agency with information marked as Confidential, you are required to indicate which specific portions of the application are not being made available to the public. These portions of the application must be accompanied with the following statement: Any request for portions of this application that are marked as confidential must be submitted in writing, pursuant to the Public Information Act, to the TCEQ Public Information Coordinator, MC 197, P.O. Box 13087, Austin, Texas 78711-3087.

Name of Public Place:	La Porte Branch Library	
Physical Address:	600 South Broadway St.	
Address Line 2:		
City:	La Porte	
ZIP Code:	77536	
County:	Harris	
Has the public place granted authorization to place the application for public		Yes
viewing and copying?		165
Does the public place have Internet access available for the public?		Yes

Date:	11/23/2020	
Permit #:	18978	
Company: _Equis	tar Chemicals, L.P	

C.	Alternate	Language	Publication

District?

Is a bilingual program required by the Texas Education Code in the School

In some cases, public notice in an alternate language is required. If an elementary or middle school nearest to the facility is in a school district required by the Texas Education Code to have a bilingual program, a bilingual notice will be required. If there is no bilingual program required in the school nearest the facility, but children who would normally attend those schools are eligible to attend bilingual programs elsewhere in the school district, the bilingual notice will also be required. If it is determined that alternate language notice is required, you are responsible for ensuring that the publication in the alternate language is complete and accurate in that language.

Yes

the district?		Yes		
If yes to either question above, list which language(s) are required by the bilingual program?		Spanish		
D. PSD and Nonattainment Permits On	lv			
If this is an application for emissions of G		tice" or		
"Consolidated Public Notice". Note: Separ			Not applicable	
We must notify the applicable county judg		Nonattainment pe	ermit or modification application	
is received. This information can be obtain	ned at:			
https://www.txdirectory.com				
Provide the information for the County J u		s or will be located	d	
The Honorable:	Lina Hidalgo			
Mailing Address:	1001 Preston, Suite 911			
Address Line 2:				
City:	Houston			
State:	TX			
ZIP Code:	77002			
Provide the information for the Presiding	Officer(s) of the municipality for this fa	acility site. This is t	frequently the Mayor.	
First Name:	Louis			
Last Name:	Rigby			
Title:	Mayor			
Mailing Address:	604 W Fairmont Parkway			
Address Line 2:				
City:	La Porte			
State:	TX			
ZIP Code:	77571			
Are the proposed facilities located within 100 km or less of an affected state or Class I Area?) km or less of an affected state or No			

Date: ____11/23/2020____ Permit #: ____18978__ Company: _Equistar Chemicals, L.P.__

III. Small Business Classification	
Complete this section to determine small business classification. If a small business requests a permit, agency rul 39.603(f)(1)(A)) allow for alternative public notification requirements if all of the following criteria are met. If these rmet, public notice does not have to include publication of the prominent (12 square inch) newspaper notice.	
Does the company (including parent companies and subsidiary companies) have fewer than 100 employees or less than \$6 million in annual gross receipts?	No
Small business classification:	No

Texas Commission on Environmental Quality Form PI-1 General Application Fodoral Applicability

Date:	_11/23/2020
Permit #:	18978
Company: _Equista	ar Chemicals, L.P

	pany: _Equistar Chemicals, L.P			
I. County Classification				
Does the project require retrospective review?		No		
sees are project require reassessave review.		110		
County (completed for you from your response on t	he General sheet)	Harris		
This project will be located in an area that is in serio				
ozone as of Sept. 23, 2019. Select from the drop-dowould like the project to be reviewed under a differe		Ozone - Serious		
, ,		ated in a county with a Seriou	s Ozone nonattainment	
	classification, and the	project will be reviewed under	a Serious Ozone nonattainment	
Determination:	the application.	te the nonattainment section b	elow and provide an analysis with	
	PSD and GHG PSD App	olicability Summary		
Is netting required for the PSD analysis for this	project?		No	
Pollutant	Project Increase	Threshold	PSD Review Required?	
со	63.22	100	No	
NO _x	12.87	40	No	
РМ	0	25	No	
PM ₁₀	0	15	No	
PM _{2.5}	0	10	No	
SO ₂	0.16	40	No	
Pb	0	0.6	No	
H ₂ S	0	10	No	
TRS	0	10	No	
Reduced sulfur compounds (including H ₂ S)	0	10	No	
H₂SO₄	0	7	No	
Fluoride (excluding HF)	0	3	No	
CO2e				
_	III. Nonattainment Appl	icability Summary		
Is netting required for the nonattainment analys		Cability Guillillary	Yes	
		rformed Attach the netting inform		
Pollutant	e after netting has been performed. Attach the netting information to the application. Project Increase (after netting) Threshold NA Review Required?			

Texas Commission on Environmental Quality Form PI-1 General Application Federal Applicability

Date: ____11/23/2020____ Permit #: ____18978__ Company: _Equistar Chemicals, L.P.__

Ozone (as VOC)	48.46	5	Yes
Ozone (as NO _x)	12.87	5	Yes

		Nonattainment Permits)	
Pollutant	Offset Ratio	Offset Quantity Required (tpy)	Where is the offset coming from?
Ozone (as VOC)	1.20 : 1	58.152	Purchase
Ozone (as NO _x)	1.20 : 1	15.444	Purchase

Date:	11/23/2020
Permit #	:18978
Company: _Equi	star Chemicals, L.P

I. General Information - Non-Renewal			
Is this project for new facilities controlled and operated directly by th (30 TAC § 116.141(b)(1) and 30 TAC § 116.163(a))	No		
A fee of \$75,000 shall be required if no estimate of capital project cost is included with the permit application. (30 TAC § 116.141(d)) Select "yes" here to use this option. Then skip sections II and III.			
Select Application Type Major Application			

II. Direct Costs - Non-Renewal		
Type of Cost	Amount	
Process and control equipment not previously owned by the applicant and not currently authorized under this chapter.	\$0.00	
Auxiliary equipment, including exhaust hoods, ducting, fans, pumps, piping, conveyors, stacks, storage tanks, waste disposal facilities, and air pollution control equipment specifically needed to meet permit and regulation requirements.	\$0.00	
Freight charges.	\$0.00	
Site preparation, including demolition, construction of fences, outdoor lighting, road, and parking areas.	\$0.00	
Installation, including foundations, erection of supporting structures, enclosures or weather protection, insulation and painting, utilities and connections, process integration, and process control equipment.	\$0.00	
Auxiliary buildings, including materials storage, employee facilities, and changes to existing structures.	\$0.00	
Ambient air monitoring network.	\$0.00	
Sub-Total:	\$0.00	

III. Indirect Costs - Non-Renewal		
Type of Cost	Amount	
Final engineering design and supervision, and administrative overhead.	\$0.00	
Construction expense, including construction liaison, securing local building permits, insurance, temporary construction facilities, and construction clean-up.	\$0.00	
Contractor's fee and overhead.	\$0.00	
Sub-Total:	\$0.00	

IV. Calculations - Non-Renewal

For GHG permits: A single PSD fee (calculated on the capital cost of the project per 30 TAC § 116.163) will be required for all of the associated permitting actions for a GHG PSD project. Other NSR permit fees related to the project that have already been remitted to the TCEQ can be subtracted when determining the appropriate fee to submit with the GHG PSD application. Identify these other fees in the GHG PSD permit application.

In signing the "General" sheet with this fee worksheet attached, I certify that the total estimated capital cost of the project as defined in 30 TAC §116.141 is equal to or less than the above figure. I further state that I have read and understand Texas Water Code § 7.179, which defines Criminal Offenses for certain violations, including intentionally or knowingly making, or causing to be made, false material statements or representations.

Estimated Capital Cost	Major Application Fee
Less than \$300,000	\$3,000 (minimum fee)

Date	e:	11/23/2020	
Pe	rmit #: _	18978	
Company: _Equista		ar Chemicals, L.P	

	Fe	es	Company:	_Equistar Chemic
\$300,000 - \$7,500,000			1.0% of capita	al cost
\$300,000 - \$25,000,000			N/A	
Greater than \$7,500,000			\$75,000 (maxin	num fee)
Greater than \$25,000,000			N/A	
	•			
Your estimated capital cost:	\$0.00	Minimum f	ee applies.	
Permit Application Fee:			\$3,000.00	
	VI Tot	al Fees		
Note: fees can be paid together wi			parate payments.	
Non-Renewal Fee	an one payment	<u> </u>	parato paymento.	\$3,000.00
Total				\$3,000.00
	VII Paymon	t Information		
A. Payment One (required)	VII. Payilleli	l IIIIOIIIIalioii		
Was the fee paid online?				Yes
Enter the fee amount:				\$ 3,000.00
Enter the check, money order, ePay	Voucher, or other	transaction	Doid through a Doy in CI	
number:			Paid through ePay in S1	EERS
Enter the Company name as it appear	ars on the check:		Equistar Chemicals LP	
C. Total Paid				\$3,000.00
C. Total Faid				\$3,000.00
VIII. Pi	rofessional Engi	neer Seal Re	guirement	
Is the estimated capital cost of the pr				No
Is the application required to be subn	nitted under the s	eal of a Texa	s licensed P.E.?	No
Note: an electronic PE seal is accept	able.			

Date: _____11/23/2020_____ Permit #: ____18978____ Company: _Equistar Chemicals, L.P.__

Pollutant	Does this pollutant require PSD review?	How will you demonstrate that this project meets all applicable requirements?
Ozone	No	Not applicable
VOC	No	Modeling: screen or refined
со	No	Modeling: screen or refined
NOx	No	Modeling: screen or refined
SO2	No	Not applicable
NH3	No	Not applicable
Chlorine	No	Not applicable
РМ	No	Not applicable
PM10	No	Not applicable

Date: _____11/23/2020_____ Permit #: ____18978____ Company: _Equistar Chemicals, L.P.__

Pollutant	Does this pollutant require PSD review?	How will you demonstrate that this project meets all applicable requirements?
PM2.5	No	Not applicable
NOx - Routine	No	Not applicable
NOx - Decoke/Hot Standby	No	Not applicable
NOx (MSS)	No	Not applicable
H2SO4	No	Not applicable

Date: _		11/23/2020
Perm	it #:	18978
Company: _E	quista	r Chemicals, L.P

Pollutant	Does this pollutant require PSD review?	How will you demonstrate that this project meets all applicable requirements?

Date:	_11/23/2020
Permit #:	18978
Company: _Equista	ar Chemicals, L.P

Notes	Additional Notes (optional)
This pollutant is not a part of this project or does not require an impacts analysis.	
Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).	
Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).	
Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).	
This pollutant is not a part of this project or does not require an impacts analysis.	
This pollutant is not a part of this project or does not require an impacts analysis.	
This pollutant is not a part of this project or does not require an impacts analysis.	
This pollutant is not a part of this project or does not require an impacts analysis.	
This pollutant is not a part of this project or does not require an impacts analysis.	

Date: ____11/23/2020____ Permit #: ____18978___ Company: _Equistar Chemicals, L.P.__

Notes	Additional Notes (optional)
This pollutant is not a part of this project or does not require an impacts analysis.	
This pollutant is not a part of this project or does not require an impacts analysis.	See NOX above
This pollutant is not a part of this project or does not require an impacts analysis.	See NOX above
This pollutant is not a part of this project or does not require an impacts analysis.	See NOX above
This pollutant is not a part of this project or does not require an impacts analysis.	

Date:	11/23/2020
Permit #:	18978
Company: _Equistar Chemicals, L.P.	

Notes	Additional Notes (optional)

Date	e:	11/23/2020	
Pe	rmit #:	18978	
Company: _Equistar Chemicals, L.P			

Plant Type			
	·	<u> </u>	

Action Requested	FINs	Unit Type	Pollutant
New/Modified	QE3050B	Control: Flare	CO
			NOx
			SO2
			voc
N.	OFOOFONANINIT	0 1 1 5	MSS
New/Modified	QE3050MAINT	Control: Flare	CO
			NOx SO2
			302
			voc
			MSS

Date:	11/23/2020
Permit #:	18978
Company: _Equistar Chemicals, L.P.	

Action Requested	FINs	Unit Type	Pollutant
New/Modified	QELOAD_ARU	Loading: Truck	VOC
	+		MSS
Consolidate	QEH2FLARE	Control: Flare	CO
			NOx
			SO2
			V00
			VOC
			MSS

Date	e:	11/23/2020	
Pe	rmit #:	18978	
Company: _Equistar Chemicals		ar Chemicals, L.P.	

Action Requested	FINs	Unit Type	Pollutant
Consolidate	QEFUG	Fugitives: Piping and Equipment Leak	VOC
			NH3
			Chlorine
			1100
			MSS
Consolidate	QEANALYZ5	Analyzer	VOC

Date	e:	11/23/2020	
Pei	rmit #:	18978	
Company: _Equist		ar Chemicals, L	.P

Action Requested	FINs	Unit Type	Pollutant
			MSS
Consolidate	QE1001B	Furnace	NOx
Consolidate	QLIOOID	i difface	NOX
			CO
			SO2
			VOC
			PM
			PM
			Mee
			MSS
Consolidate	QE1002B	Furnace	NOx
			00
			CO SO2
			VOC
			PM
			MSS

Date	e:	11/23/2020	
Pe	rmit #:	18978	
Company: _Equista		ar Chemicals, L.f	٥

Action Requested	FINs	Unit Type	Pollutant
Consolidate	QE1003B	Furnace	NOx
Consolidate	QL 1003B	i umace	IVOX
			CO SO2
			VOC
			PM
			FIVI
	+		
			MSS
Consolidate	QE1004B	Furnace	NOx
			CO
			SO2 VOC
			VOC
			PM
			MSS
			INI22

Date	e:	11/23/2020	
Pei	rmit #:	18978	
Company: _Equist		ar Chemicals, L	.P

Action Requested	FINs	Unit Type	Pollutant
Consolidate	QE1005B	Furnace	NOx
			CO
			SO2
			VOC
			PM
			PIVI
			MSS
			ee
Consolidate	QE1006B	Furnace	NOx
			CO
			SO2
			VOC
			PM
			MSS

Date	e:	11/23/2020	
Pei	rmit #:	18978	
Company: _Equista		ar Chemicals, L.P.	

Action Requested	FINs	Unit Type	Pollutant
Consolidate	QE1007B	Furnace	NOx
Consolidate	QL1007B	i umace	INOX
			CO SO2
			VOC
			PM
			FIVI
			MSS
Consolidate	QE1008B	Furnace	NOx
			00
			CO SO2
			SO2 VOC
			PM
			MSS

Date:	11/23/2020
Permit #:	18978
Company: _Equist	ar Chemicals, L.P

Action Requested	FINs	Unit Type	Pollutant
Consolidate	QE1009B	Furnace	NOx
			CO
			SO2
			VOC
			PM
			MSS
Consolidate	QE1010B	Furnace	NOx - Routine
			NOx -
			Decoke/Hot
			Standby
			NOx (MSS)
			SO2
			VOC
			PM
			NH3
			MSS
Consolidate	QE1011B	Furnace	NOx - Routine
			NOx -
			Decoke/Hot
		Dama 0	Standby

Date	e:	11/23/2020	
Pei	rmit #:	18978	
Company: _	_Equist	ar Chemicals, L.P.	

Action Requested	FINs	Unit Type	Pollutant
			NOx (MSS) CO SO2
			CO
			SO2
			VOC
			PM
			NH3
			14.10
			MSS

Date: _	1	1/23/2020	
Permit	:#:	18978	
Company: _Eq	uistar	Chemicals, L.P	·

Current Tier I BACT	Confirm	Additional Notes
Current Tier I BACT	Confirm	Additional Notes
Provide emission factor used and reference.		See Section 4 in the application
Provide emission factor used and reference.	Yes	See Section 4 in the application

Current Tier I BACT	Confirm	Additional Notes
Provide emission factor used and reference.	Yes	See Section 4 in the application
Provide emission factor used and reference.	Yes	See Section 4 in the application
Provide emission factor used and reference.		No changes
VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to		
three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow	Yes	See Section 4 in the application
monitor required. Composition or BTU analyzer may be required.		
Same as normal operation BACT requirements.		
Provide emission factor used and reference.	Yes	See Section 4 in the application
Provide emission factor used and reference.	Yes	See Section 4 in the application
Provide emission factor used and reference.		No changes
VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to		
three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow	Yes	See Section 4 in the application
monitor required. Composition or BTU analyzer may be required.		
Same as normal operation BACT requirements.		

Date:	11/23/2020
Permit #	18978
Company: _Equis	star Chemicals, L.P

Current Tier I BACT	Confirm	Additional Notes
Specify option: 1. VOC vp < 0.5 psia: submerged or bottom loading. No splash loading. 2. VOC vp ≥ 0.5 psia: route to VOC control device and meet the specific control device requirements. 98.7% collection efficiency for annual NSPS XX leak check.	Yes	See Section 4 in the application
Same as normal operation BACT requirements.		
Provide emission factor used and reference.	Yes	See Section 5 in the application
Provide emission factor used and reference.	Yes	See Section 5 in the application
Provide emission factor used and reference.		No changes
VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow monitor required. Composition or BTU analyzer may be required.		No changes
Same as normal operation BACT requirements.		

Date:	1	1/23/2020	
Perm	it #:	18978	
Company: _E	quistar	Chemicals, L.	P

Current Tier I BACT	Confirm	Additional Notes
Specify which is applicable: 1. Uncontrolled VOC emissions < 10 tpy: none		
2. 10 tpy < uncontrolled VOC emissions < 25 tpy: 28M leak detection and repair program. 75% credit for 28M.		
3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors.	Yes	See Section 5 in the application
4. VOC vp < 0.002 psia: no inspection required, no fugitive emissions expected.		
For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift. Appropriate credit for AVO program.		
AVO inspection twice per shift. Appropriate credit for AVO program.		No changes
See additional notes:		No changes
Same as normal operation BACT requirements.		
See additional notes:		No TCEQ guidance for BACT for VOC emissions from analyzer

Date	:	_11/23/2020	
Per	mit #:	18978	
Company:	Equist	ar Chemicals, L.P	_

Current Tier I BACT	Confirm	Additional Notes
See additional notes:		No TCEQ guidance for BACT for VOC emissions from analyzer
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
Same as normal operation BACT requirements.		
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for		No changes
PM. See Additional Notes:		ŭ
Same as normal operation BACT requirements.		

Date:		11/23/2020	
Pern	nit#:	18978	
Company: _E	- Equista	ar Chemicals, L.I	٥

Current Tier I BACT	Confirm	Additional Notes
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
Same as normal operation BACT requirements.		
·		
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
Same as normal operation BACT requirements.		

Date	:	_11/23/2020	
Per	mit #:	18978	
Company: _	Equist	ar Chemicals, L.P	

Current Tier I BACT	Confirm	Additional Notes
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
Same as normal operation BACT requirements.		
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
Same as normal operation BACT requirements.		

Date:		11/23/2020	
Pern	nit #:	18978	
Company: _E	quista	ar Chemicals, L.P	_

Current Tier I BACT	Confirm	Additional Notes
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
Same as normal operation BACT requirements.		
·		
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
Same as normal operation BACT requirements.		

Date:	11/23/2020
Permit #:	18978
Company: _Equist	ar Chemicals, L.P

Current Tier I BACT	Confirm	Additional Notes
Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu. Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
Same as normal operation BACT requirements.		
See additional notes:		No changes
		, to one in goo
See additional notes:		No changes
See additional notes:		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. See Additional Notes:		No changes
See Additional Notes:		No changes
Company of a manufacture DACT requirements		
Same as normal operation BACT requirements.		No shanna
See additional notes:		No changes
See additional notes:		No changes
Norsian 4.0		

Date:	11/23/2020
Permit	#: 18978
Company: _Eqi	uistar Chemicals, L.P.

Current Tier I BACT	Confirm	Additional Notes
See additional notes:		No changes
50 ppmv corrected to 3% O2		No changes
See Additional Notes:		No changes
See Additional Notes:	Yes	No changes See Section 5 in the application
The emission reduction techniques for PM10 and PM2.5 will follow the technique for		
PM. See Additional Notes:		No changes
See Additional Notes:		No changes
Same as normal operation BACT requirements.		
Version 4.0	21	

Date: ____11/23/2020____ Permit #: ____18978___ Company: _Equistar Chemicals, L.P.__

FIN	Unit Type	Pollutant	Minimum Monitoring Requirements	Confirm
QE3050B	Control: Flare	СО	Pilot flame presence monitored continuously. Waste gas flow and	Yes
•		NOx	Pilot flame presence monitored continuously. Waste gas flow and	Yes
		SO2	Pilot flame presence monitored continuously. Waste gas flow and	
		VOC	Pilot flame presence monitored continuously. Waste gas flow and	Yes
QE3050MAINT	Control: Flare	CO	Pilot flame presence monitored continuously. Waste gas flow and	Yes
		NOx	Pilot flame presence monitored continuously. Waste gas flow and	Yes
		SO2	Pilot flame presence monitored continuously. Waste gas flow and	
		VOC	Pilot flame presence monitored continuously. Waste gas flow and	Yes
QELOAD ARU	Loading: Truck	VOC	Observation for connection leaks.	Yes
QLLO/ID_/IIIIO	Louding. Truck	700	escervation to connection round.	100
QEH2FLARE	Control: Flare	CO	Pilot flame presence monitored continuously. Waste gas flow and	Yes

Date:		_11/23/2020	
Pe	rmit #:	18978	_
Company:	Equist	ar Chemicals, L.P.	_

		NOx	Pilot flame presence monitored continuously. Waste gas flow and	Yes
		SO2	Pilot flame presence monitored continuously. Waste gas flow and	
		VOC	Pilot flame presence monitored continuously. Waste gas flow and	
EFUG	Fugitives: Dining and	VOC	Lies EDA Method 21 to manitar for looks from eagle on number	Yes
REFUG	Fugitives: Piping and		Use EPA Method 21 to monitor for leaks from seals on pumps,	res
		NH3	Look for leaks twice per shift using audio, visual or olfactory (AVO)	
		Chlorine	See additional notes:	
QEANALYZ5	Analyzer	VOC	See additional notes:	
XLAINAL I ZJ	Allalyzei	VOC	See additional notes.	
QE1001B	Furnace	NOx	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
∡⊏ IUU ID	rumace			
		CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	

Date:	11/23/2020
Permit #:	18978
Company: _Equist	ar Chemicals, L.P

2510005		110	1400 M D	
QE1002B	Furnace	NOx	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	
			The enhance in mentioning teetiniques for time and times will relieve	
QE1003B	Furnace	NOx	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
<u>XL 1000D</u>	i dillace	CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	
QE1004B	Furnace	NOx	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
				res
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	

Date:	11/23/2020	
Permit #:	18978	
Company: _Equistar Chemicals, L.P.		

E1005B	Furnace	NOx	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	
E1006B	Furnace	NOx	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
,_ 1000D	i dilidoc	CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	162
		FIVI	The emission monitoring techniques for FWTO and FWZ.5 will follow	
F1007B	Furnace	NOv	2400 MMDtu/by: Continuously monitor the fuel firing rates. Deriodic	
E1007B	Furnace	NOx CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
			<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Vac
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	

Date:		_11/23/2020	
Permit #:		18978	
Company: _Equista		ar Chemicals, L.P.	_

QE1008B	Furnace	NOx	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	
QE1009B	Furnace	NOx	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		CO	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	
QE1010B	Furnace	NOx - Routine	See additional notes:	
			See additional notes:	
		NOx (MSS)	See additional notes:	
		co	<100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic	
		SO2	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
		VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
		PM	The emission monitoring techniques for PM10 and PM2.5 will follow	
		NH3	SCR requires continuous monitoring for slip reduced to an hourly	
QE1011B	Furnace	NOx - Routine	See additional notes:	
QE1011B	Furnace	NOx - Routine	See additional notes: See additional notes:	
QE1011B	Furnace		See additional notes: See additional notes: See additional notes:	

Date:	1	1/23/2020	
Perm	it #:	18978	
Company: _E	quistar	Chemicals, L.F	P

		Continuously monitor the fuel firing rates. Periodic monitoring of fuel	
	VOC	Continuously monitor the fuel firing rates. Periodic monitoring of fuel	Yes
	PM	The emission monitoring techniques for PM10 and PM2.5 will follow	
	NH3	SCR requires continuous monitoring for slip reduced to an hourly	

Date	e:	11/23/2020	
Permit #:		18978	
Company:	Equista	ar Chemicals, L.I	Ρ.

Additional Notes for Monitoring	Proposed Measurement Technique (only complete for pollutants with a project increase above the PSD threshold)
No changes	
No changes	

Date:	1	1/23/2020	
Perm	nit #:	18978	
Company: _E	quistar	Chemicals, L.I	P

No changes	
No changes No changes	
N	
No changes No changes	
ino changes	
Not applicable	
No changes No changes No changes	
No changes	
No changes	
No changes	

Date:	_11/23/2020
Permit #:	18978
Company: _Equis	tar Chemicals, L.P

No changes	
No changes	
No changes No changes	
in onango	
No changes	
140 Ghanges	
No changes	
No changes	
No changes No changes No changes	
No changes	
No changes	
No changes	
No changes No changes	
ino onangoo	
No changes	

Date	e:	_11/23/2020_	
Pei	rmit #:	18978	
Company: _	_Equista	ar Chemicals,	L.P

No changes	
No changes	
No changes No changes	
Two changes	
No observes	
No changes	
No changes	
No changes	
No changes No changes No changes	
No changes	
Y	
Y	
Y	
No changes No changes No changes	
No changes No changes No changes	
No changes No changes No changes	
No changes No changes No changes	
No changes No changes No changes	
No changes No changes No changes	
No changes No changes No changes	
No changes No changes No changes	
No changes No changes No changes	

Date:	11/23/2020
Permit	#:18978
Company: _Equ	uistar Chemicals, L.P

No changes No changes	
No changes	
No changes	
No changes	
No changes	
No changes	
No changes No changes No changes	
INO Changes	
No changes	
ino changes	
No changes	
No changes	
No changes No changes No changes	
No changes	
No changes	
No objection	
No changes No changes	
INO Changes	
No changes	
No changes	
No changes No changes	
No changes	

Date:	11/23/2020
Permit	#: 18978
Company: _Equ	istar Chemicals, L.P

No changes	
No changes	
No changes	

Date: ____11/23/2020_____ Permit #: ____18978____ Company: _Equistar Chemicals, L.P.___

Item	How submitted	Date submitted
A. Administrative Information		
Form PI-1 General Application	STEERS	11/23/2020
Hard copy of the General sheet with original (ink) signature	Mail	11/23/2020
Professional Engineer Seal	Not applicable	
B. General Information		
Copy of current permit (both Special Conditions and MAERT)		
Core Data Form		
Area map	STEERS	11/23/2020
Plot plan	STEERS	11/23/2020
Process description	STEERS	11/23/2020
Process flow diagram	STEERS	11/23/2020
List of MSS activities	STEERS	11/23/2020
State regulatory requirements discussion	STEERS	11/23/2020
C. Federal Applicability		
Summary and project emission increase determination - Tables 1F and 2F	STEERS	11/23/2020
Netting analysis (if required) - Tables 3F and 4F as needed	STEERS	11/23/2020
D. Technical Information	<u>.</u>	
BACT discussion, if additional details are attached	STEERS	11/23/2020
Monitoring information, if additional details are attached	STEERS	11/23/2020
Material Balance (if applicable)	STEERS	11/23/2020
Calculations	STEERS	11/23/2020
E. Impacts Analysis		
Qualitative impacts analysis		
MERA analysis		
Electronic Modeling Evaluation Workbook: SCREEN3	STEERS	11/23/2020
Electronic Modeling Evaluation Workbook: NonSCREEN3	Not applicable	
PSD modeling protocol		
F. Additional Attachments		

Air Quality Analysis Supporting Permit Amendment 18978

EQUISTAR

Equistar Chemicals, LP
La Porte Complex
La Porte, Harris County, Texas

November 2020

DiSorbo Consulting, LLC

8501 N. Mopac Expy, Suite 300 Austin, TX 78759 713.955.1230 (p) | 713.955.1201 (f) disorboconsult.com

Table of Contents

Section	n 1 Sum	ımary	1-1
1.1		duction	
Section	n 2 Map	s and Plot Plan	2-1
Section	n 3 Sup	plemental Information	3-1
3.1	Natio	onal Ambient Air Quality Standards (NAAQS) Analysis	3-1
3.2	MER	A Review	3-1
	3.2.1	MERA Step 0 Processing	3-1
	3.2.2	MERA Step 2 Processing	3-1
	3.2.3	MERA Step 3 Processing with Unit Impact Multipliers	3-1
3.3	Mode	eling Options	3-2
	3.3.1	Flare Calculations	3-2
	3.3.2	Dispersion Option (Urban vs. Rural)	3-2
List o	of Tabl	es	
Table 3	3-1 De N	finimis Analysis	3-3
Table 3	3-2 MEF	RA Step 2 - De Minimis Check	3-4
Table 3	3-3 MEF	RA Step 3 - Hourly	3-5
Table 3	3-4 MEF	RA Step 3 - Annual	3-6
Table 3	3-5 Flare	e Calculations	3-7
Table 3	3-6 Land	d Use Classification	3-8
List o	of Figu	res	
Figure	2-1 Are	a Map	2-2
Figure	2-2 Plot	: Plan	2-3

Appendices

Appendix A EMEW Link

Appendix B Modeling Files Link

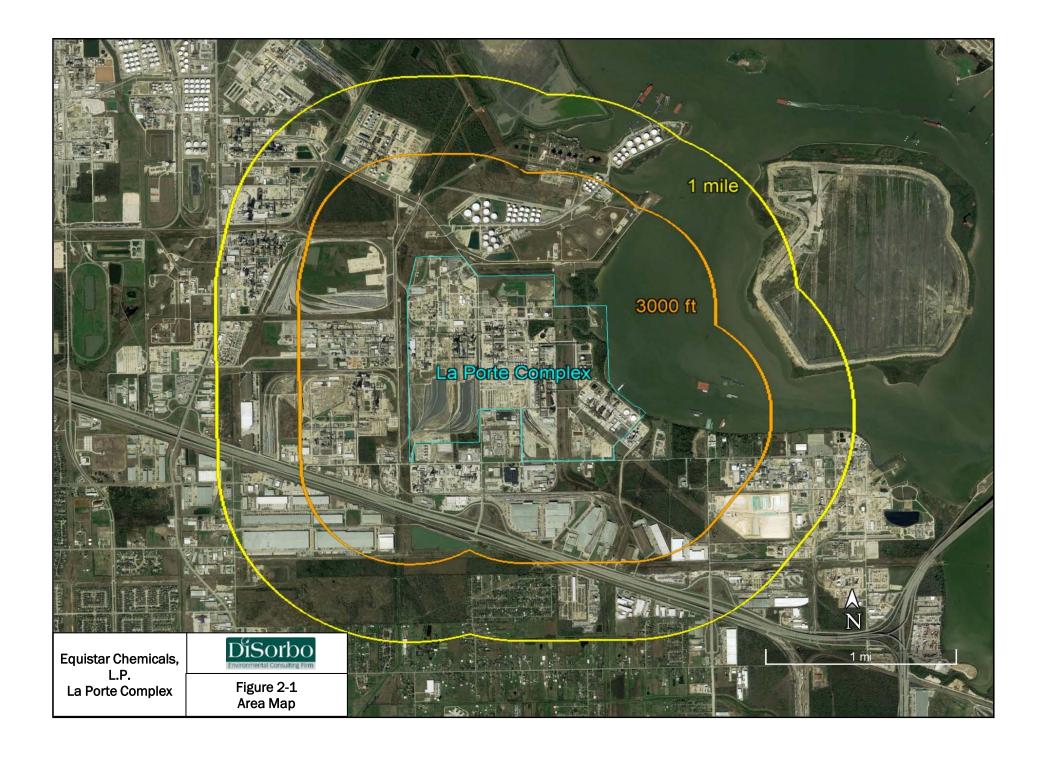
Section 1 Summary

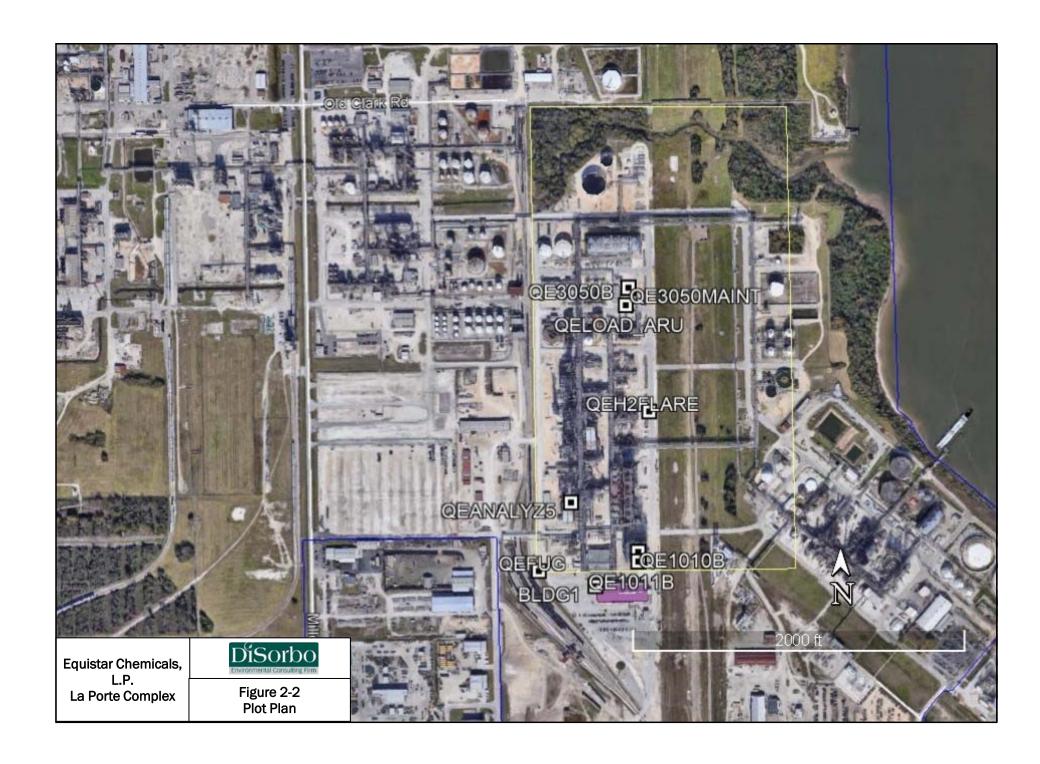
1.1 Introduction

This Air Quality Analysis (AQA) has been completed to demonstrate to the Texas Commission on Environmental Quality (TCEQ) Air Dispersion Modeling Team (ADMT) that the proposed project emissions will comply with all applicable air quality standards. The AQA was performed in support of the Amendment for Permit 18978 at the La Porte Complex owned by Equistar Chemicals, LP. LyondellBasell owns LyondellBasell Acetyls and Equistar Chemicals LP. There are two separate entities which have common ownership.

The content of the AQA is primarily included in TCEQ's Electronic Modeling Evaluation Workbook (EMEW). However, the following items could not be included in the EMEW and will be provided in this document:

- Plot Plan
- Area Map
- NAAQS Post-Processing
- MERA Information (Step 2 and Step 3 Post-Processing)
- Flare Calculations
- Land Use Classification


The modeling methodologies used in this analysis are justified as discussed in the appropriate section of this AQA and are consistent with current TCEQ and U.S. EPA guidelines. All modeling results of the AQA comply with applicable standards under the Health Effects Review program.


Section 2 Maps and Plot Plan

The La Porte Complex is located approximately 3 miles to the east of Deer Park, Texas.

Figure 2-1 is the Area Map illustrating the location of the facility using aerial photography obtained from the Google Earth. The figure shows the Equistar Chemicals, LP property boundary, and a 3,000-foot radius from the site. There are no schools located within the 3,000-foot radius of the site. The Universal Transverse Mercator (UTM) coordinates are based on the North American Datum (NAD) of 1928, Zone 15.

A plot plan depicting the locations of the sources is provided in Figure 2-2.

Section 3 Supplemental Information

The data provided in this section supplements the contents of the EMEW.

3.1 National Ambient Air Quality Standards (NAAQS) Analysis

Generic unit impact multipliers were created with SCREEN3 using a 1 lb/hr emission rate for each source and used for the NAAQS analysis. In order to estimate the resulting concentrations for each applicable pollutant, these generic factors were multiplied with the corresponding emission rate for each source. The maximum concentrations were compared to the significant impact level (SIL) for each pollutant. Table 3-1 show the Unit Impact Multipliers (UIMs), emission rates, and total concentrations for the evaluated pollutants (CO and NO₂). The results of CO and NO₂ for all evaluated averaging times are less than the SIL and therefore the demonstration is complete.

3.2 MERA Review

The Health Effects Review process is not completely documented within the EMEW. Emissions increases from all pollutants listed in the 'Speciated Emissions' tab in the EMEW have proposed increases in emissions as part of the permit amendment.

3.2.1 MERA Step 0 Processing

The emissions from propane and propylene have been classified as simple asphyxiates according to the MERA guidance document and no further review is required.

3.2.2 MERA Step 2 Processing

Total emission rate increases for all pollutants were compared to emission rate threshold values in accordance with Step 2 of the MERA process. The following pollutants "screen out" of the MERA evaluation at Step 2: n-pentane, n-butane, lubricating oils, isobutane, isopentane, and dimethylformamide. Table 3-2 illustrates this comparison.

3.2.3 MERA Step 3 Processing with Unit Impact Multipliers

Generic unit impact multipliers were created with SCREEN3 using a 1 lb/hr emission rate for each source. In order to estimate the resulting concentrations in Step 3 of the Modeling and Effects Review (MERA) guidance, these generic factors were multiplied with the corresponding emission rate

for each source. The maximum concentrations were compared to 10% of the ESL. Table 3-3 and Table 3-4 show the Unit Impact Multipliers (UIMs), emission rates, and total concentrations for the 1-hour and annual averaging times, respectively. The remaining constituents meet MERA Step 3 guidelines. The overall results from MERA Step 3 were included in the EMEW.

3.3 Modeling Options

3.3.1 Flare Calculations

The ARU flare (Model IDs QE3050B and 3050BMAINT) and the hydrogen flare (Model ID QE2FLARE) were modeled using the POINT source type and the TCEQ's default parameters¹. The effective diameter of the flare was calculated according to TCEQ guidance² and presented in Table 3-5.

3.3.2 Dispersion Option (Urban vs. Rural)

The urban option was selected for the La Porte Complex. The urban option is appropriate since the La Porte Complex is located within the Greater Houston metropolitan area. To further justify the urban selection, a land-use analysis was conducted. Based on an evaluation of land-use within 10 km, approximately 61.90% of the surrounding land is classified as urban. Since the area is predominately urban, the urban option is the representative of the surrounding urban land use. The surrounding land use types and percentages are provided in Table 3-6.

_

¹ Air Quality Modeling Guidelines, APDG 6232v4, Revised 11/19.

² Ibid.

Table 3-1 De Minimis Analysis

Equistar Chemicals, L.P. QE1 Unit

1-hour Unit	1-hour Unit	1-hour Unit
Impact (µg/m³	Impact (µg/m³	Impact (µg/m³
per lb/hr)	per lb/hr)	per lb/hr)
2.09E-01	1.91E-01	

		Significant	EPN >>>	QE3050B	3050BMAINT	QEH2FLARE	Accessed to a Time		Project	Less than SIL?
Constituent	Averaging Period	Impact Level (SIL) [1]	MODEL ID >>>	QE3050B	3050BMAINT	QEH2FLARE	Averaging Time Adjustment Factor	NO _x to NO ₂ Factor	GI Cmay [2]	
				lb/hr	lb/hr	lb/hr			μg/m3	
Carbon Monoxide (CO)	1-hour	2000		48.61	37.77	34.68	1.0		23.7	yes
Carbon Monoxide (CO)	8-hour	500		48.61	37.77	34.68	0.7		16.6	yes
Nitrogen Dioxide (NO ₂)	1-hour	7.5		10.07	7.61		1.0	0.9	3.2	yes
Nitrogen Dioxide (NO ₂)	Annual	1		0.63	2.25		0.08	0.9	0.04	yes

^{1.} Air Quality Modeling Guidelines, APDG 6232v4, Revised 11/19, Table B-1 page 37.

^{2.} The "Project GLCmax" was calculated by multiplying the "Unit Impacts" by the emissions rates shown for each source.

Table 3-2 MERA Step 2 - De Minimis Check

Equistar Chemicals, L.P. QE1 Unit

Constituent Name	CAS No.	1-hour ESL ^[1]	Annual ESL ^[1]	Is the Annual ESL < 10% ST EPN >>	QE1010B	QE1011B	Hourly QE3050B	Emission Increa	ases in lb/h	QEANALYZ5	QELOAD_ARU	Total Emissions ^[2]	Are Emissions De Minimis?	
		µg/m³	µg/m³	µg/m³	MODEL ID >>	QE1010B	QE1011B	QE3050B	3050BMAINT	QEFUG	QEANALYZ5	QELOAD_ARU	lb/hr	
ethylene	74-85-1	1400	34	yes	4.38E-03	4.38E-03	1.01E+00	2.48E+01	3.07E-03	1.03E-06		2.58E+01	no	
propane	74-98-6			no	5.84E-04	5.84E-04	2.41E-01		5.97E-03			2.48E-01	Simple Asphyxiant	
propylene	115-07-1			no			4.32E-02	2.213	4.77E-04			2.26E+00	Simple Asphyxiant	
n-pentane	109-66-0	59000	7100	no	7.30E-05	7.30E-05	3.05E-01		6.35E-04			3.06E-01	yes	
n-hexane	110-54-3	5600	200	yes	2.19E-04	2.19E-04			1.40E-03			1.83E-03	no	
acetylene	74-86-2	26600	2660	no	4.38E-03	4.38E-03	3.50E+01	4.92E+01	7.05E-02			8.43E+01	no	
n-butane	106-97-8	66000	7100	no	1.46E-04	1.46E-04	4.47E-03		1.40E-03			6.16E-03	yes	
lubricating oils, petroleum, hydrotreated, spent	64742-58-1	1000	100	no					2.10E-05			2.10E-05	yes	
isobutane	75-28-5	23000	7100	no	1.46E-04	1.46E-04	7.60E-03		1.27E-03			9.16E-03	yes	
isopentane	78-78-4	59000	7100	no	7.30E-05	7.30E-05			6.35E-04			7.81E-04	yes	
2-butene	107-01-7	10000	480	yes			1.36E-05					1.36E-05	no	
dimethylformamide	68-12-2	300	30	no			9.84E-03				6.48E-03	1.63E-02	yes	

^{1.} The ESLs are obtained from the TCEQ's Texas Air Monitoring Information System (TAMIS) accessed on 10/29/2020.

^{2.} The emissions for each constituent are summed and compared the Step 2 de minimis thresholds of the TCEQ's Modeling and Effects Review Applicability (MERA) guidance document (APDG 5874v5, Revised 03/18).

Table 3-3
MERA Step 3 - 10% of ESL Check (1-hour)
Equistar Chemicals, L.P.

. QE1 Unit

		1-hour Unit II	mpact (µg/m	³ per lb/hr) >>	0.4411	0.4411	0.2088	0.1912	11.5	200.2													
				Description >>>>	Furnace 10	Furnace 11	Flare	Flare (Maintenance)	Fugitives	Main Flare Analyzer													
Constituent Name	I CAS No. I	1-hour Annual ESL ESL											EPN >>>>	QE1010B	QE1011B	QE3050B	3050BMAINT	QEFUG	QEANALYZ5	Fugitive Factor	Project GLCmax [1]	% of ESL	Is GLCmax < 10% of
			MODEL ID	QE1010B	QE1011B	QE3050B	3050BMAINT	QEFUG	QEANALYZ5				ESL?										
		μg/m ³	µg/m³		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr		μg/m ³											
ethylene	74-85-1	1400	34		4.38E-03	4.38E-03	1.01E+00	2.48E+01	3.07E-03	1.03E-06	0.6	4.98	0.36%	yes									
n-hexane	110-54-3	5600	200		2.19E-04	2.19E-04			1.40E-03		0.6	0.01	<0.01%	yes									
acetylene	74-86-2	26600	2660		4.38E-03	4.38E-03	3.50E+01	4.92E+01	7.05E-02		0.6	17.22	0.06%	yes									
2-butene	107-01-7	10000	480				1.36E-05					2.84E-06	<0.01%	yes									

^{1.} The "Project GLCmax" for all constituents was calculated by multiplying the "Unit Impacts" by the emissions rates shown for each source and summing those products together.

Table 3-4
MERA Step 3 - 10% of ESL Check (Annual)
Equistar Chemicals, L.P.

QE1 Unit

		1-hour Unit I	mpact (μg/m	ger lb/hr) >>>	0.2088	0.1912	11.5	200.2					
		Annual Unit Impact (µg/m³ per tpy) [1] >>>			0.0477	0.0437	2.6324	45.7078					
				Description >>>>	Flare	Flare (Maintenance)	Fugitives	Main Flare Analyzer				% of < :	
Constituent Name	CAS No.	1-hour ESL	1-hour Annual ESL ESL	EPN >>>>	QE3050B	3050BMAINT	QEFUG	QEANALYZ5	Fugitive Factor	Annual Factor	Project GLCmax ^[2]		Is GLCmax < 10% of ESL?
				MODEL ID >>>>	QE3050B	3050BMAINT	QEFUG	QEANALYZ5					
		μg/m ³	μg/m ³		tpy	tpy	tpy	tpy			μg/m ³		
ethylene	74-85-1	1400	34		2.79E-02	1.53E+01	1.34E-02	4.50E-06	0.6	0.08	5.52E-02	<0.01%	yes
n-hexane	110-54-3	5600	200				6.12E-03		0.6	0.08	7.73E-04	<0.01%	yes
acetylene	74-86-2	26600	2660		2.90E+00	2.72E+01	3.09E-01		0.6	0.08	1.45E-01	<0.01%	yes
2-butene	107-01-7	10000	480		7.61E-07					0.08	2.90E-09	<0.01%	yes

^{1.} The annual Unit Impact Multiplier (UIM) was calculated by multiplying the 1-hour UIM by 2000 lbs per ton and dividing by 8760 hours per year.

^{2.} The "Project GLCmax" for all constituents was calculated by multiplying the "Unit Impacts" by the emissions rates shown for each source and summing those products together.

Table 3-5 Flare Calculations

Equistar Chemicals, L.P. QE1 Unit

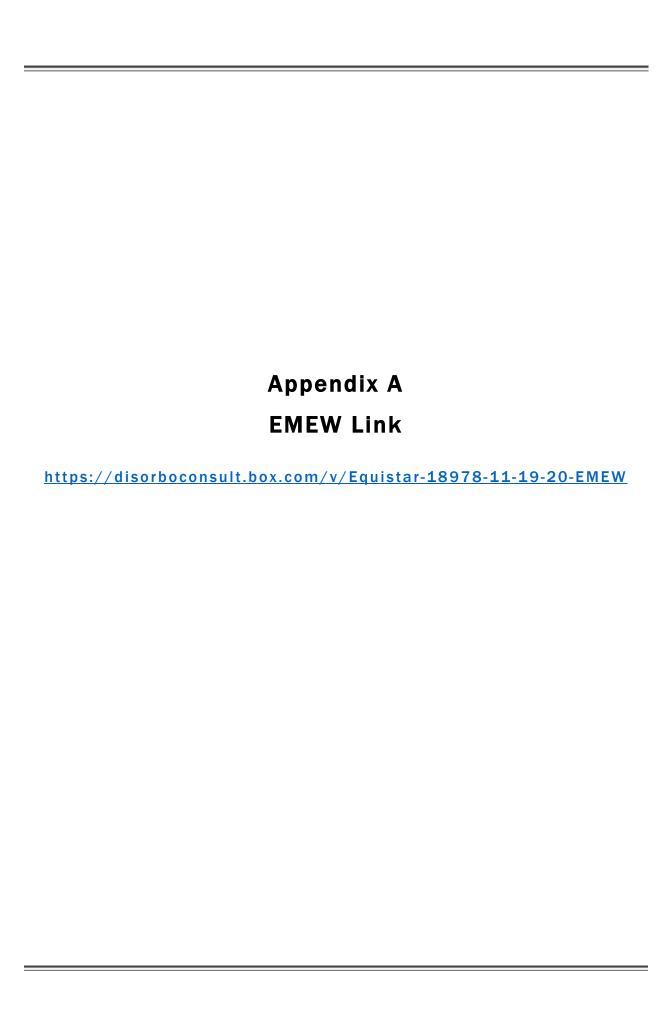
EPN	Model ID	Flare Description	Heat Release MMBtu/hr	Avg. Molecular Weight (MW) Ib/Ib-mole	Gross Heat Release (q) cal/s	Net Heat Release (qn) cal/s	Effective Stack Diameter (D) m
QE3050B	QE3050B	ARU Flare	207.47	20.63	14522864	11356783	3.37
3050BMAINT	3050BMAINT	Flare Maintenance	255.18	28.51	17862284	13284273	3.64
QEH2FLARE	QEH2FLARE	Hydrogen Flare	379.09	4.84	26536498	23734244	4.87

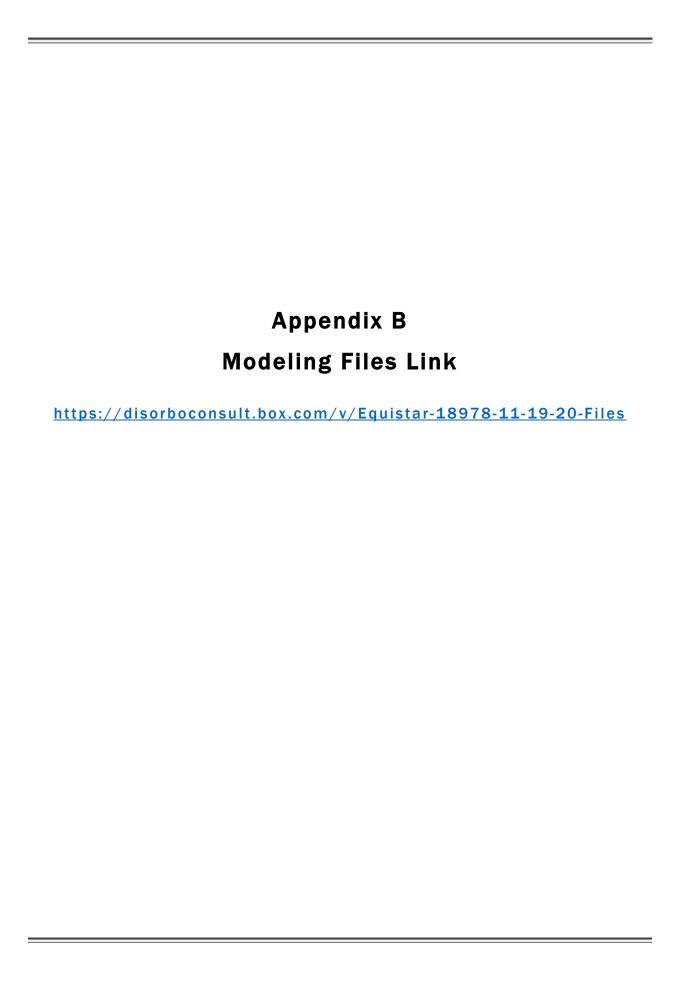
$$D = \sqrt{(10^{-6} q_n)} \text{ and } q_n = q(1 - 0.048 \sqrt{MW})$$
where

q = gross heat release in cal/sec

MW = volume average molecular weight

D =effective stack exit diameter in meters


Table 3-6 Land Use Classification


Equistar Chemicals, L.P. Lyondell La Porte Permit 18978

QE-1 Permit Renewal

Land Use Type [1]	Rural/Urban	Percent
Open Water	Rural	18.53%
Developed, Open Space	Urban	15.07%
Developed, Low Intensity	Urban	15.60%
Developed, Medium Intensity	Urban	17.50%
Developed, High Intensity	Urban	12.09%
Barren Land (Rock/Sand/Clay)	Urban	1.64%
Deciduous Forest	Rural	2.20%
Evergreen Forest	Rural	0.97%
Mixed Forest	Rural	1.01%
Shrub/Scrub	Rural	1.22%
Grassland/Herbaceous	Rural	3.88%
Pasture/Hay	Rural	3.83%
Cultivated Crops	Rural	0.04%
Woody Wetlands	Rural	2.95%
Emergent Herbaceous Wetlands	Rural	3.45%
	Total Urban:	61.90%
	Total Rural:	38.08%

^[1] Land use types and percentages were obtained were the land use tool, NaviKnow (http://landuse.naviknow.com/).

Electronic Modeling Evaluation Workbook for SCREEN3

Date: 11/19/2020 Permit #:18978

General Company Name: Equistar Chemicals, L.P.

EMEW Version No.: Version 2.3

Purpose Statement:

This workbook is completed by the applicant and submitted to the Texas Commission on Environmental Quality (TCEQ). This workbook is a tool available for all projects using SCREEN3 for an impacts review and its use is required starting June 1, 2019. Provide the workbook with the permit application submittal for any Minor New Source Review project requiring a modeling impacts demonstration.

This workbook follows the guidance outlined in the Air Quality Modeling Guidelines (APDG 6232) which can be found here: https://www.tceg.texas.gov/assets/public/permitting/air/Modeling/guidance/airguality-mod-guidelines6232.pdf

Workbook Instructions:

- 1. Save a copy of the workbook to your computer or desktop prior to entering data.
- 2. Complete all required sections leaving no blanks. You may use the "tab" button or the arrow keys to move to the next available cell. Use "enter" to move down a line. Note: drop-downs are case-sensitive.
- 3. Fill in the workbook in order, do not skip around as this will cause errors. Use caution if changing a previously entered entry.
- 4. Not applicable sections of this workbook will be hidden as data is entered. For example, answering "No" to "Is downwash applicable?" will hide these sections of the workbook required only for downwash entry.
- 5. Email the workbook electronic file (EMEW) and any attachments to the Air Permits Initial Review Team. The subject line should read "Company Name Permit Number (if known) NSR Permit Application". Email address:
- 6. If printing the EMEW, follow the directions below to create a workbook header.
- 7. Printing the EMEW is not required for submitting to the Air Permits Division (APD); however, you may need to print it for sending to the regional offices, local programs, and for public access if notice is required. To print the workbook, follow the instructions below. Please be aware, several sheets contain large amounts of data and caution should be taken if printing, such as the Speciated Emissions sheet.
- 8. Updates may be necessary throughout the review process. Updated workbooks must be submitted in electronic format to APD. For submittal to regional offices, local programs, or public places you only have to print sheets that had updates. Be sure to change the headers accordingly.

Note: Since this will be part of the permit application, follow the instructions in the Form PI-1 General Application on where to send copies of your EMEW and permit application. The Form PI-1 General Application can be found here: https://www.tceq.texas.gov/permitting/air/quidance/newsourcereview/nsrapp-tools.html

Create Headers Before Printing:

- 1. Right-click one of the workbook's sheet tabs and "Select All Sheets."
- 2. Enter the "Page Layout View" by using the navigation ribbon's View > Workbook Views > Page Layout, or by clicking the page layout icon in the lower-right corner of Excel.
- 3. Add the date, company name, and permit number (if known) to the upper-right header. Note that this may take up to a minute to update your spreadsheet. Select any tab to continue working on the spreadsheet.

Printing Tips:

While APD does not need a hard copy of the full workbook, you may need to print it for sending to the regional offices, local programs, and for public access if notice is required.

- 1. The default printing setup for each sheet in the workbook is set for the TCEQ preferred format. The print areas are set up to not include the instructions on each sheet.
- 2. You have access to change all printing settings to fit your needs and printed font size. Some common options include:
 - -Change what area you are printing (whole active sheet or a selection);
 - -Change the orientation (portrait or landscape);
 - -Change the margin size; and
 - -Change the scaling (all columns on one sheet, full size, your own custom selection, etc.).

Final Modeling Submittal:

Anytime final modeling files are being submitted the applicant should notify the following that modeling files are being sent: permit reviewer assigned, permit reviewer's supervisor, and the modeler assigned from the initial submittal.

The following options are available for an applicant to provide modeling (or any other files):

- 1. Applicant can mail or hand deliver the files on an external storage device.
- 2. Applicant can email files smaller than 25mb.
- 3. Applicant can transfer files through an FTP site:
 - a. Applicant may have their own FTP site and can share the files with TCEQ staff.
- b. Applicants can use the TCEQ FTP site.

Instructions for setting up an account on the TCEQ FTP site are located at:

https://ftps.tceq.texas.gov/help/

Electronic Modeling Evaluation Workbook for SCREEN3

General

Company Name: Equistar Chemicals, L.P.

Date: 11/19/2020 Permit #:18978

	Acknowledgement:								
Workbook and any necessary attachme changed the TCEQ Electronic Modeling	I acknowledge that I am submitting an authorized TCEQ Electronic Modeling Evaluation Workbook and any necessary attachments. Except for inputting the requested data, I have not changed the TCEQ Electronic Modeling Evaluation Workbook in any way, including but not limited to changing formulas, formatting, content, or protections.								
	Administrative Information:								
Data Type:	Facility Information:								
Dunio at Nivershau (C. Dinita).									
Project Number (6 Digits): Permit Number:	40070								
Regulated Entity ID (9 Digits):	18978 100210319								
Facility Name:	Equistar Chemicals La Porte Complex								
Facility Address:	1515 Miller Cut-Off Road								
Facility County (select one):	Harris								
Company Name:	Equistar Chemicals, LP								
Company Contact Name:	Talia J Sanchez								
Company Contact Name. Company Contact Number:	713-767-1028								
Company Contact Number. Company Contact Email:	Talia.Sanchez@lyondellbasell.com								
Modeling Contact Email:	Amanda Jones								
Modeling Company Name, as applicable:	Disorbo Consulting, LLC								
Modeling Company Name, as applicable. Modeling Contact Number:	847-373-6605								
Modeling Contact Number: Modeling Contact Email:	ajones@disorboconsult.com								
New/Existing Site (select one):	Existing Site								
Modeling Date (MM/DD/YYYY):	11/20/2020								
JTM Zone (select one):	15								
SCREEN3 analyses. Please use the separ	of Contents which sections are applicable and included for the own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents	workbook is only for							
SCREEN3 analyses. Please use the separ models: AERSCREEN, ISC/ISCPrime, and	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the d/or AERMOD.	workbook is only for ne following air dispersion Select an X from the dropdown menu if							
SCREEN3 analyses. Please use the separ models: AERSCREEN, ISC/ISCPrime, and	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet):	workbook is only for ne following air dispersion Select an X from the dropdown menu if included:							
SCREEN3 analyses. Please use the separ models: AERSCREEN, ISC/ISCPrime, and	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General	workbook is only for the following air dispersion Select an X from the dropdown menu if included:							
SCREEN3 analyses. Please use the sepandels: AERSCREEN, ISC/ISCPrime, and Section:	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options	workbook is only for me following air dispersion Select an X from the dropdown menu if included: X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash	Select an X from the dropdown menu if included: X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters	Select an X from the dropdown menu if included: X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters	Select an X from the dropdown menu if included: X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters	Select an X from the dropdown menu if included: X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations	Select an X from the dropdown menu if included: X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Parameters	Select an X from the dropdown menu if included: X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Parameters	Select an X from the dropdown menu if included: X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Volume Source Calculations Volume Source Parameters Point and Flare Source Emissions	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Parameters Point and Flare Source Emissions Area Source Emissions	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Emissions Volume Source Emissions Volume Source Emissions Speciated Emissions Speciated Emissions	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Parameters Point and Flare Source Emissions Area Source Emissions Volume Source Emissions Speciated Emissions Intermittent Sources	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Parameters Point and Flare Source Emissions Area Source Emissions Volume Source Emissions Intermittent Sources Modeling Scenarios	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Emissions Area Source Emissions Volume Source Emissions Speciated Emissions Intermittent Sources Modeling Scenarios Monitor Calculations	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Parameters Point and Flare Source Emissions Area Source Emissions Volume Source Emissions Volume Source Emissions Intermittent Sources Modeling Scenarios Monitor Calculations Background Justification	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separamodels: AERSCREEN, ISC/ISCPrime, and Section: Section: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Volume Source Calculations Volume Source Parameters Point and Flare Source Emissions Area Source Emissions Volume Source Emissions Volume Source Emissions Volume Source Emissions Modeling Scenarios Modeling Scenarios Monitor Calculations Background Justification Secondary PM2.5 Analysis (MERPs calculations)	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Parameters Point and Flare Source Emissions Area Source Emissions Volume Source Emissions Intermittent Sources Modeling Scenarios Monitor Calculations Background Justification Secondary PM2.5 Analysis (MERPs calculations) NAAQS/State Property Line (SPL) Modeling Results	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separation of t	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Volume Source Parameters Volume Source Parameters Point and Flare Source Emissions Area Source Emissions Volume Source Emissions Volume Source Emissions Intermittent Sources Modeling Scenarios Monitor Calculations Background Justification Secondary PM2.5 Analysis (MERPs calculations) NAAQS/State Property Line (SPL) Modeling Results Unit Impact Multipliers	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
SCREEN3 analyses. Please use the separamodels: AERSCREEN, ISC/ISCPrime, and Section: 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Area Source Parameters Volume Source Calculations Volume Source Emissions Area Source Emissions Area Source Emissions Speciated Emissions Intermittent Sources Modeling Scenarios Monitor Calculations Background Justification Secondary PM2.5 Analysis (MERPs calculations) NAAQS/State Property Line (SPL) Modeling Results Unit Impact Multipliers Health Effects Modeling Results	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							
	own if the item below is included in the workbook. Note: This rate Electronic Modeling Evaluation Workbook (EMEW) for the dor AERMOD. Table of Contents Sheet Title (Click to jump to specific sheet): General Model Options Building Downwash Flare Source Parameters Point Source Parameters Volume Source Parameters Volume Source Parameters Point and Flare Source Emissions Area Source Emissions Volume Source Emissions Volume Source Emissions Intermittent Sources Modeling Scenarios Monitor Calculations Background Justification Secondary PM2.5 Analysis (MERPs calculations) NAAQS/State Property Line (SPL) Modeling Results Unit Impact Multipliers	Select an X from the dropdown menu if included: X X X X X X X X X X X X X X X X X X							

Electronic Modeling Evaluation Workbook for SCREEN3

General

Company Name: Equistar Chemicals, L.P.

Date: 11/19/2020 Permit #:18978

Included Attachments Instructions: The following are attachments that must be included with any modeling analysis. If providing the plot plan and area map with the permit application, ensure there is also a copy with the EMEW. The copy can be electronic.	Select an X from the dropdown menu if included:
Plot Plan:	
Instructions, Mode all that such in the attached plat plan. For larger properties and deposition of the second	municida marritinia managad in
Instructions: Mark all that apply in the attached plot plan. For larger properties or dense source areas, plot plans that are legible.	, provide multiple zoomed in
Property/Fence Lines all visible and marked.	X
North arrow included.	X
Clearly marked scale.	X
All sources and buildings are clearly labeled.	X
Area Map:	
Instructions: Mark all that apply in the attached area map.	
Annotate schools within 3,000ft of source's nearest property line.	X
All property lines are included.	X
Non-industrial receptors are identified.	Choose an item
Additional Attachments (as applicable): Note: These are just a few examples of attachments that may need to be included. There may be others depending on the scope of the modeling analysis.	Select an X from the dropdown menu if included:
Single Property Line Designation	
Include Agreement, Order, and map defining each petitioner.	Choose an item
Post Processing using Unit Impact Multipliers (UIMs)	
Include documentation on any calculations used with the UIMs (i.e., Step 3 of the MERA).	Choose an item
Modeling Techniques	
Provide documentation on modeling techniques indicated in the workbook.	Choose an item
Other Attachments	
Provide a list in the box below of additional attachments being provided that are not listed above:	
Supplemental AQA	X

Electronic Modeling Evaluation Workbook for SCREEN3

Model Options

Date: 11/19/2020
Permit #:18978

	wodel Options	Company Name:	Equistar Chemicals, L.F	٠.
I. Duningt Information				

Equistar Chemicals, LP (Equistar) owns and operates the QE-1 Olefins Unit within the La Porte Complex, located in La Porte, Texas. Equistar proposes to update emissions calculations for the ARU flare (EPN: QE3050B) and ARU flare maintenance (EPN: QE3050MAINT), add DMF truck loading fugitives, and roll-in Permits 158696, 159015, and 162490.

A. Project Overview: In the box below, give a brief Project Overview. To type or insert text in box,

double click in the box below. Please limit your response to 2000 characters.

II. Air Dispersion Modeling Preliminary Information

Instructions: Fill in the information below based on your modeling setup. The selections chosen in this sheet will carry throughout the sheet and workbook. Based on selections below, only portions of the sheet and workbook will be available. Therefore, it is vital the sheet and workbook are filled out in order, do NOT skip around.

For larger text boxes, double click to type or insert text.

A. Building Downwash							
Yes Is downwash applicable? (Select "Yes" or "No")							
B. Type of A	Analyses: (Select "X" in all tha	t apply)					
X Minor NSR NAAQS		State Property Line					
Χ	Health Effects						

Electronic Modeling Evaluation Workbook for SCREEN3

Model Options

Company Name: Equistar Chemicals, L.P.

Date: 11/19/2020 Permit #:18978

	ents Evaluating: (Select "X" in								
NAAQS: Lis	t all pollutants that require a r	nodeling revi	ew. (Select "X" in all that apply)						
	SO ₂		PM ₁₀						
X	со		PM _{2.5}						
	Pb	Χ	NO_2						
Both Identify which averaging periods are being evaluated for NO ₂ .									
Tier 2: 0.9			Identify the 1-hr NO ₂ tier used for SCREEN3.						
Tier 2: 0.9			Identify the annual NO ₂ tier used for SCREEN3.						
Health Effects: Fill in the Speciated Emissions sheet with all applicable pollutants, CAS numbers,									
	cts: Fill in the Speciated Emis	ssions sheet v	with all applicable pollutants, CAS numbers,						
and ESLs. D. Dispersion	•	ox to select a	with all applicable pollutants, CAS numbers,						
and ESLs. D. Dispersion	on Options: Select "X" in the b	ox to select a							
and ESLs. D. Dispersion sure to explain X	on Options: Select "X" in the b nin the reasoning for this in the Urban Rural	ox to select a e box below.	an option. Note: if selecting both options, be						
and ESLs. D. Dispersic sure to explain X Provide justi	on Options: Select "X" in the bain the reasoning for this in the Urban Rural fication on the dispersion opti	ox to select a box below.	an option. Note: if selecting both options, be						

Electronic Modeling Evaluation Workbook for SCREEN3

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

Model Options E. Meteorological Data: Select Meteorological Dataset Modeled: Full Meteorological Data F. Receptor Grid: Describe the receptor grid being modeled in the following text box: The receptor grid extends to 50,000 meter at 100 meter intervals. G. Terrain: Select the terrain option being modeled: Flat For justification on terrain selection, fill in the box below: The surrounding terrain may be described as generally flat. H. Modeling Techniques: Briefly describe any modeling techniques used for the SCREEN3 analyses. Provide additional attachments, if needed, to support the analyses.

Electronic Modeling Evaluation Workbook for SCREEN3
Building Downwash

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

Modeled Building ID	Length (m)	Width (m)	Maximum Height (m)	Tank Justification	Additional Information
BLDG1	91.44	30.48	13.1064		
	+				
	+				
	1				
	+				
	_				
	+				
					1

Electronic Modeling Evaluation Workbook for SCREEN3
Point Source Parameters

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

Facility:										
									Exit	Exit
		Modeling			Easting:	Northing:	Stack	Stack	Velocity	Temperature
EPN	Model ID	Scenario	Source Description	Point Source Justification	X [m]	Y [m]	Height [m]	Diameter [m]	[m/s]	(K)
QE1010B	QE1010B	Routine	Furnace 10	stack	300648.00	3288019.00	58.83	2.292	17.678	388.706
QE1011B	QE1011B	Routine	Furnace 11	stack	300648.00	3288002.00	58.83	2.292	17.678	388.706
QE3050B	QE3050B	Routine	ARU Flare	Modeling using default stack parameters and effective stack diameter, calculations provided in supplemental AQA	300638.00	3288494.00	43.28	3.370	20.000	1273.000
3050BMAINT	3050BMAIN T	Routine	ARU Flare Maintenance	Modeling using default stack parameters and effective stack diameter, calculations provided in supplemental AQA	300638.00	3288494.00	43.28	3.640	20.000	1273.000
QEH2FLARE	QEH2FLAR E	Routine	Hydrogen Flare	Modeling using default stack parameters and effective stack diameter, calculations provided in supplemental AQA	300670.00	3288269.00	21.34	4.872	20.000	1273.000
QEANALYZ5	QEANALYZ5	Routine	Main Flare Analyzer	stack	300528.00	3288108.00	2.44	0.030	0.030	293.150
QELOAD_ARU	QELOAD_A RU	Routine	DMF Loading Fugitives	conservatively using pseudo-point parameters for truck loading fugitives	300630.43	3288465.56	3.05	0.001	0.001	0.000
	-									

Electronic Modeling Evaluation Workbook for SCREEN3

Area Source Parameters

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

acility:										
EPN	Model ID	Modeling Scenario	Easting: X [m]	Northing: Y [m]	Modeled Release Height [m]	Longer Side Length X [m]	Shorter Side Length Y [m]	Area Source Size Justification	Area Source Release Height Justification	Source Description
QEFUG	QEFUG	Routine	300462.00	3287978.00	1.52	853.44	591.31	Fugitive emissions occur throughout the entire process area.	Average height of fugitive emissions.	Process Fugitives
		1								

Electronic Modeling Evaluation Workbook for SCREEN3

Point + Flare Emissions

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

EPN	Model ID	Modeling Scenario	Pollutant	Averaging Time	Standard Type	Review Context	Intermittent Source?
QE3050B	QE3050B	Routine	CO	1-hr	NAAQS	SIL Analysis	No
QE3050B	QE3050B	Routine	CO	8-hr	NAAQS	SIL Analysis	No
QE3050B	QE3050B	Routine	NOx	1-hr	NAAQS	SIL Analysis	No
QE3050B	QE3050B	Routine	NOx	Annual	NAAQS	SIL Analysis	No
3050BMAINT	3050BMAINT	Routine	CO	1-hr	NAAQS	SIL Analysis	No
3050BMAINT	3050BMAINT	Routine	СО	8-hr	NAAQS	SIL Analysis	No
3050BMAINT	3050BMAINT	Routine	NOx	1-hr	NAAQS	SIL Analysis	No
3050BMAINT	3050BMAINT	Routine	NOx	Annual	NAAQS	SIL Analysis	No
QEH2FLARE	QEH2FLARE	Routine	CO	1-hr	NAAQS	SIL Analysis	No
QEH2FLARE	QEH2FLARE	Routine	СО	8-hr	NAAQS	SIL Analysis	No
QE1010B	QE1010B	Routine	Generic	1-hr			No
QE1010B	QE1010B	Routine	Health Effects Pollutant	1-hr	Health Effects	Project-Wide	No
QE1011B	QE1011B	Routine	Generic	1-hr			No
QE1011B	QE1011B	Routine	Health Effects Pollutant	1-hr	Health Effects	Project-Wide	No
QE3050B	QE3050B	Routine	Generic	1-hr			No
QE3050B	QE3050B	Routine	Health Effects Pollutant	1-hr	Health Effects	Project-Wide	No
QE3050B	QE3050B	Routine	Health Effects Pollutant	Annual	Health Effects	Project-Wide	No
3050BMAINT	3050BMAINT	Routine	Generic	1-hr			No
3050BMAINT	3050BMAINT	Routine	Health Effects Pollutant	1-hr	Health Effects	Project-Wide	No
3050BMAINT	3050BMAINT	Routine	Health Effects Pollutant	Annual	Health Effects	Project-Wide	No
QEANALYZ5	QEANALYZ5	Routine	Generic	1-hr			No
QEANALYZ5	QEANALYZ5	Routine	Health Effects Pollutant	1-hr	Health Effects	Project-Wide	No
QEANALYZ5	QEANALYZ5	Routine	Health Effects Pollutant	Annual	Health Effects	Project-Wide	No
QELOAD ARU	QELOAD ARU	Routine	Health Effects Pollutant	1-hr	Health Effects	Project-Wide	No
QELOAD ARU	QELOAD ARU	Routine	Health Effects Pollutant	Annual	Health Effects	Project-Wide	No

Electronic Modeling Evaluation Workbook for SCREEN3

Point + Flare Emissions

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

		Modeled Emission		Scalars or Factors		Downwash Structure	Distance to Ambient Air
EPN	Model ID	Rate [lb/hr]	Basis of Emission Rate	Used?	Scalar/Factor in Use	Considered	(m)
QE3050B	QE3050B	48.61	Project Increases	No.	Gediai/i deter iii 630	Considered	485.00
			1		0.7 Adjustment Factor for 8-hr		
QE3050B	QE3050B	48.61	Project Increases	Yes	averaging time		485.00
QE3050B	QE3050B	10.07	Project Increases	No			485.00
QE3050B	QE3050B	0.632	Project Increases	Yes	0.08 Adjustment Factor for the annual averaging time		485.00
3050BMAINT	3050BMAINT	37.77	Project Increases	No			485.00
3050BMAINT	3050BMAINT	37.77	Project Increases	Yes	0.7 Adjustment Factor for 8-hr averaging time		485.00
3050BMAINT	3050BMAINT	7.61	Project Increases	Yes	0.9 NOx to NO2 Conversion Factor		485.00
3050BMAINT	3050BMAINT	2.25	Project Increases	Yes	0.08 Adjustment Factor for the annual averaging time, 0.9 NOx to NO2 Conversion Factor		485.00
QEH2FLARE	QEH2FLARE	34.68	Project Increases	No			381.00
QEH2FLARE	QEH2FLARE	34.68	Project Increases	Yes	0.7 Adjustment Factor for 8-hr averaging time		381.00
QE1010B	QE1010B	1.00	Unit rate of 1 lb/hr	No		BLDG1	270.00
QE1010B	QE1010B		Project Increases	No		BLDG1	270.00
QE1011B	QE1011B	1.00	Unit rate of 1 lb/hr	No		BLDG1	270.00
QE1011B	QE1011B		Project Increases	No		BLDG1	270.00
QE3050B	QE3050B	1.00	Unit rate of 1 lb/hr	No			490.00
QE3050B	QE3050B		Project Increases	No			490.00
QE3050B	QE3050B		Project Increases	Yes	0.08 Adjustment Factor for the annual averaging time		490.00
3050BMAINT	3050BMAINT	1.00	Unit rate of 1 lb/hr	No			490.00
3050BMAINT	3050BMAINT		Project Increases	No			490.00
3050BMAINT	3050BMAINT		Project Increases	Yes	0.08 Adjustment Factor for the annual averaging time		490.00
QEANALYZ5	QEANALYZ5	1.00	Unit rate of 1 lb/hr	No	5 5		160.00
QEANALYZ5	QEANALYZ5		Project Increases	No			160.00
QEANALYZ5	QEANALYZ5		Project Increases	Yes	0.08 Adjustment Factor for the annual averaging time		160.00
QELOAD ARU	QELOAD ARU		Project Increases	No			490.00
QELOAD ARU	QELOAD ARU		Project Increases	No			490.00

Date: 11/19/2020 Permit #:18978

Electronic Modeling Evaluation Workbook for SCREEN3 Area Source Emissions

Company Name: Equistar Chemicals, L.P.

		Modeling					Intermittent
EPN	Model ID	Modeling Scenario	Pollutant	Averaging time	Standard Type	Review Context	Source?
QEFUG	QEFUG	Routine	Generic	1-hr			No
QEFUG	QEFUG	Routine	Health Effects Pollutant	1-hr	Health Effects	Project-Wide	No
QEFUG	QEFUG	Routine	Health Effects Pollutant	Annual	Health Effects	Project-Wide	No
	_						

Date: 11/19/2020 Permit #:18978

Electronic Modeling Evaluation Workbook for SCREEN3 Area Source Emissions

Company Name: Equistar Chemicals, L.P.

EPN	Model ID	Modeled Emission Rate [lb/hr]	Basis of Emission Rate	Scalars or Factors Used?	Scalar/Factor in Use	Distance to Ambient Air (m)
QEFUG	QEFUG	1.00	Unit rate of 1 lb/hr	Yes		78.00
QEFUG	QEFUG	1.00	Project Increases	Yes	Fugitive factor of 0.6	78.00
QEFUG	QEFUG		Project Increases	Yes	Fugitive factor of 0.6 Fugitive factor of 0.6, 0.08 Adjustment Factor for the annual averaging time	78.00
				-		

Date: 11/19/2020 Permit #:18978

Electronic Modeling Evaluation Workbook for SCREEN3 Speciated Emissions

Company Name: Equistar Chemicals, L.P.

CAS#	Modeled Site Wide Emission [tpy]	98 99 Modeled Project Wide Emission Rate H [Ib/hr] Z	86 99 Modeled Site Wide Emission Rate 1987 [b/hr] 2	06 99 Modeled Project Wide Emission Rate ⊢ Maritry] Z	96 99 Modeled Site Wide Emission Rate H Wity] Z	DA Modeled Project Wide Emission K [1b/hr]	Modeled Site Wide Emission Ib/hr]	Modeled Project Wide Emission [tpy]	Modeled Site Wide Emission Y Kpy]	요 B Modeled Project Wide Emission Rate B Ib/hr]	A Modeled Site Wide Emission Rate こと [lb/hr] 'b	M T Modeled Project Wide Emission Rate C D [tpy] V	D Modeled Site Wide Emission Ly [tpy]
74-85-1		24.82		15.29		1.03E-06		4.50E-06		0.00E+00		0.00E+00	
74-98-6													
115-07-1													
109-66-0		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00	
110-54-3		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00	
74-86-2		49.25		27.17		0.00E+00		0.00E+00		0.00E+00		0.00E+00	
106-97-8		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00	
64742-58-1		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00	
75-28-5		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00	
78-78-4		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00	
107-01-7		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00	
68-12-2		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00648		2.02E-05	

Electronic Modeling Evaluation Workbook for SCREEN3
Speciated Emissions

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

	Modeled Project Wide Emission Rate [lb/hr]	Modeled Site Wide Emission Rate [lb/hr]	Modeled Project Wide Emission Rate [tpy]	Modeled Site Wide Emission Rate [tpy]
CAS #	QEFUG	QEFUG	QEFUG	QEFUG
74-85-1	0.00307		0.0134	
74-98-6				
115-07-1 109-66-0	6.35E-04		0.00278	
110-54-3	0.00140		0.00278	
74-86-2	0.00140		0.00612	
106-97-8	0.0703		0.00615	
64742-58-1	2.10E-05		9.20E-05	
75-28-5	0.00127		0.00556	
78-78-4	6.35E-04		0.00330	
107-01-7	0.00E+00		0.00270 0.00E+00	
68-12-2	0.00E+00		0.00E+00	
33 .2 2	2.002 00		2.002 00	

Electronic Modeling Evaluation Workbook for SCREEN3

Combined Emissions

Company Name: Equistar Chemicals, L.P.

Date: 11/19/2020 Permit #:18978

					<u> </u>
EPN	Model ID	Modeling scenario	Pollutant	Modeled Averaging Time	Standard Type
QE3050B	QE3050B	Routine	CO	1-hr	NAAQS
QE3050B	QE3050B	Routine	CO	8-hr	NAAQS
QE3050B	QE3050B	Routine	NOx	1-hr	NAAQS
QE3050B	QE3050B	Routine	NOx	Annual	NAAQS
3050BMAINT	3050BMAINT	Routine	CO	1-hr	NAAQS
3050BMAINT	3050BMAINT	Routine	CO	8-hr	NAAQS
3050BMAINT	3050BMAINT	Routine	NOx	1-hr	NAAQS
3050BMAINT	3050BMAINT	Routine	NOx	Annual	NAAQS
QEH2FLARE	QEH2FLARE	Routine	CO	1-hr	NAAQS
QEH2FLARE	QEH2FLARE	Routine	CO	8-hr	NAAQS
QE1010B	QE1010B	Routine	Generic	1-hr	
QE1010B	QE1010B	Routine	Health Effects Pollutant	1-hr	Health Effects
QE1011B	QE1011B	Routine	Generic	1-hr	
QE1011B	QE1011B	Routine	Health Effects Pollutant	1-hr	Health Effects
QE3050B	QE3050B	Routine	Generic	1-hr	
QE3050B	QE3050B	Routine	Health Effects Pollutant	1-hr	Health Effects
QE3050B	QE3050B	Routine	Health Effects Pollutant	Annual	Health Effects
3050BMAINT	3050BMAINT	Routine	Generic	1-hr	
3050BMAINT	3050BMAINT	Routine	Health Effects Pollutant	1-hr	Health Effects
3050BMAINT	3050BMAINT	Routine	Health Effects Pollutant	Annual	Health Effects
QEANALYZ5	QEANALYZ5	Routine	Generic	1-hr	
QEANALYZ5	QEANALYZ5	Routine	Health Effects Pollutant	1-hr	Health Effects
QEANALYZ5	QEANALYZ5	Routine	Health Effects Pollutant	Annual	Health Effects
QELOAD_ARU	QELOAD_ARU	Routine	Health Effects Pollutant	1-hr	Health Effects
QELOAD_ARU	QELOAD_ARU	Routine	Health Effects Pollutant	Annual	Health Effects
QEFUG	QEFUG	Routine	Generic	1-hr	
QEFUG	QEFUG	Routine	Health Effects Pollutant	1-hr	Health Effects
QEFUG	QEFUG	Routine	Health Effects Pollutant	Annual	Health Effects

Electronic Modeling Evaluation Workbook for SCREEN3

Combined Emissions

Company Name: Equistar Chemicals, L.P.

Date: 11/19/2020 Permit #:18978

				Downwash
		Source	Modeled Emission	Structure
Review Context	Intermittent	Туре	Rate [lb/hr]	Considered
SIL Analysis	No	Point	48.61	
SIL Analysis	No	Point	48.61	
SIL Analysis	No	Point	10.07	
SIL Analysis	No	Point	0.63	
SIL Analysis	No	Point	37.77	
SIL Analysis	No	Point	37.77	
SIL Analysis	No	Point	7.61	
SIL Analysis	No	Point	2.25	
SIL Analysis	No	Point	34.68	
SIL Analysis	No	Point	34.68	
	No	Point	1.00	BLDG1
Project-Wide	No	Point		BLDG1
	No	Point	1.00	BLDG1
Project-Wide	No	Point		BLDG1
	No	Point	1.00	
Project-Wide	No	Point		
Project-Wide	No	Point		
	No	Point	1.00	
Project-Wide	No	Point		
Project-Wide	No	Point		
	No	Point	1.00	
Project-Wide	No	Point		
Project-Wide	No	Point		
Project-Wide	No	Point		
Project-Wide	No	Point		
	No	Area	1.00	
Project-Wide	No	Area		
Project-Wide	No	Area		

Date: 11/19/2020 Permit #:18978

Electronic Modeling Evaluation Workbook for SCREEN3 Modeling Scenarios Company

	Modeling Scenarios	Company Name: Equistar Chemicals, L.P.
Modeling Scenario	Scenario Description:	
Routine	All project emission increases r	represent routine emissions.

Date: 11/19/2020 Permit #:18978

Electronic Modeling Evaluation Workbook for SCREEN3

NAAQS-SPL Modeling Results Company Name: Equistar Chemicals, L.P.

Date: 11/19/2020 Permit #:18978

Electronic Modeling Evaluation Workbook for SCREEN3 NAAQS-SPL Modeling Results Company

Company Name: Equistar Chemicals, L.P.

Table 3. Modeling Results for Minor NSR De Minimis

Pollutant	Averaging Time	GLCmax (µg/m³)	De Minimis (μg/m³)	
SO ₂	1-hr		7.8*	
SO ₂	3-hr		25	
SO ₂	24-hr		5	
SO ₂	Annual		1	
PM ₁₀	24-hr		5	
NO ₂	1-hr	3.20188	7.5**	
NO ₂	Annual	0.04053	1	
CO	1-hr	23.68315	2000	
CO	8-hr	16.57821	500	

Additional information for the De Minimis values listed above can be found at:

^{*} https://www.tceq.texas.gov/assets/public/permitting/air/memos/appwso2.pdf

^{**} https://www.tceq.texas.gov/assets/public/permitting/air/memos/guidance_1hr_no2naaqs.pdf

ental Quality
for SCREEN3

Date: 11/19/2020
Permit #:18978

Company Name: Equistar Chemicals, L.P.

Electronic Modeling Evaluation Workbook for SCREEN3 Unit Impact Multipliers

EPN	Model ID	Modeling Scenario	1-hr GLCmax (μg/m³ per lb/hr)	3-hr GLCmax (μg/m³ per lb/hr)	8-hr GLCmax (µg/m³ per lb/hr)	24-hr GLCmax (μg/m³ per lb/hr)	Annual GLCmax (µg/m³ per lb/hr)
QE1010B	QE1010B	Routine	0.4411	0.39699	0.30877	0.17644	0.035288
QE1011B	QE1011B	Routine	0.4411	0.39699	0.30877	0.17644	0.035288
QE3050B	QE3050B	Routine	0.2088	0.18792	0.14616	0.08352	0.016704
3050BMAINT	3050BMAINT	Routine	0.1912	0.17208	0.13384	0.07648	0.015296
QEANALYZ5	QEANALYZ5	Routine	200.2	180.18	140.14	80.08	16.016
QEFUG	QEFUG	Routine	11.53	10.377	8.071	4.612	0.9224
				0	0	0	0
				0	0	0	0
				0	0	0	0
				Ō	0	0	0

Electronic Modeling Evaluation Workbook for SCREEN3
Health Effect Modeling Results

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

Modeled Hea	Modeled Health Effect Results (MERA Guidance):				Step 4: Production		
Chemical Species	CAS Number	Averaging Time	ESL [µg/m³]	10% ESL Step 3 Modeled GLCmax [µg/m³]	25 % ESL Step 4 Production GLCmax since most recent site wide modeling [µg/m³]	10% ESL Step 4 Production Project Only GLCmax [µg/m³]	
ethylene	74-85-1	1-hr	1400	4.98			
ethylene	74-85-1	Annual	34	0.06			
n-hexane	110-54-3	1-hr	5600	0.01			
n-hexane	110-54-3	Annual	200	0.00			
acetylene	74-86-2	1-hr	26600	17.22			
acetylene	74-86-2	Annual	2660	0.14			
2-butene	107-01-7	1-hr	10000	0.00			
2-butene	107-01-7	Annual	480	0.00			

Electronic Modeling Evaluation Workbook for SCREEN3
Health Effect Modeling Results

Date: 11/19/2020 Permit #:18978

Company Name: Equistar Chemicals, L.P.

Modeled Hea Step 4: MSS			Step 5: MSS Only	Step 6	Step 7: Site Wide	
Chemical Species	50% ESL Step 4 MSS GLCmax since most recent site wide modeling [µg/m³]	25% ESL Step 4 MSS Project Only GLCmax [µg/m³]	Full ESL Step 5 GLCmax [µg/m³]	Was Step 6 relied on to fall out of the MERA?	Site Wide GLCmax [µg/m³]	Site Wide GLCni [µg/m³]
ethylene						
ethylene						
n-hexane						
n-hexane						
acetylene						
acetylene						
2-butene						
2-butene		·				
		·				

Electronic Modeling Evaluation Workbook for SCREEN3

Modeling File Names

Company Name: Equistar Chemicals, L.P.

Date: 11/19/2020 Permit #:18978

Model File Base Name	Pollutant	Averaging Time	File Extensions	Additional File Description
QE3050B	NOx, CO, health effects	1-hr, 8-hr, annual	*.out	de minimis/project wide
QE3050MAINT	NOx, CO, health effects	1-hr, 8-hr, annual	*.out	de minimis/project wide
QEH2FLARE	CO	1-hr, 8-hr	*.out	de minimis
QEANALY25	health effects	1-hr, annual	*.out	project wide
QEFUG	health effects	1-hr, annual	*.out	project wide
QE1010B_QE1011B	health effects	1-hr, annual	*.out	project wide