Materials Meets Engineering - Frankfurt

Frederik Thoma
June 18th 2019
Agenda

• Requirements and challenges to the automotive industry
• Automotive evolution and scenario
• Radical change within European mobility market
• Plastic parts in an electrical vehicle, example: Jaguar I-Pace
• Smart materials fits new requirements
Requirements to future automotive industry

- All cars have to fulfill stricter CO2 and NOx requirements
- International commitment to reduce emissions (e.g. Kyoto-protocol, Paris agreement)
- Implementation of real driving emissions (RDE) test which completes WLTP*
- Reduction of fuel consumption

* Worldwide harmonized light vehicle test (lab test)

Source: international council on clean transportation www.theicct.org
Challenges for the automotive industry

Powertrain:
• Turbo charged smaller engines
• New developed DeNOx systems (e.g. SCR*)
• Enhanced charge air cooler systems (e.g. water cooled)
• Cylinder deactivation, Start/stop systems, energy recovery (micro hybrid system) etc.

Lightweight:
• Metal replacement
• Plastic replacement with other suitable plastics (e.g. PP instead of PA)
• Composites and hybrid structures (possible with PIT technique – will explain some sheets further)

Electrification:
• Step by step combustion engine reduction to 20% by 2030

* Selective catalytic reduction
European mobility market will face radical change in 2030

• 20-50% of all new car sales in Europe may be fully electrified by 2030
• New requirements will lead to new mobility trends:
 - Autonomous and shared mobility will increase greatly by 2030
 - The personal mileage will increase by two digit percentage
 - Car sharing will be more focused than an own car
European mobility market will face radical change in 2030

- 20-50% of all new car sales in Europe may be fully electrified by 2030

→ E-Vehicles have a lot of components which are not necessary in a combustion car

→ Plastics demand will increase significantly

Source: A2mac1
Examples of higher plastics demand → battery pack

- **9 kg of Plastics in the Battery pack**

All products are available within the APS portfolio!

<table>
<thead>
<tr>
<th>APS material opportunity</th>
<th>Application</th>
<th>Weight</th>
<th>Material</th>
<th>Material ref.</th>
<th>Manufacturer</th>
<th>#A2mac1 ref#</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Alternative</td>
<td>Cell Module, large</td>
<td>0.087</td>
<td>PPO</td>
<td>modified PPO-GF10</td>
<td>OEM Logo</td>
<td>1709-30</td>
</tr>
<tr>
<td>Schualblend M/M8</td>
<td>Relay Box</td>
<td>0.073</td>
<td>ABS+PC</td>
<td>PC+ABS</td>
<td>Isabellenhuette</td>
<td>1709-176</td>
</tr>
<tr>
<td>Schuladur A GF30</td>
<td>Relay Box</td>
<td>0.084</td>
<td>PBT</td>
<td>PBT GF30</td>
<td>LEM</td>
<td>1709-180</td>
</tr>
<tr>
<td>Schulamid 66</td>
<td>Relay Box</td>
<td>0.125</td>
<td>PA</td>
<td>PA66</td>
<td>n.a.</td>
<td>1709-159</td>
</tr>
<tr>
<td>Schulamid 66 GF30 FR</td>
<td>Relay Box</td>
<td>1.455</td>
<td>PA</td>
<td>PA66 GF30 FR</td>
<td>n.a.</td>
<td>1709-194</td>
</tr>
<tr>
<td>Schulamid 66</td>
<td>Wiring Harness</td>
<td>0.115</td>
<td>PA</td>
<td>PA66</td>
<td>OEM Logo</td>
<td>1709-234</td>
</tr>
<tr>
<td>Moplen / Hostacom</td>
<td>Service Disconnect</td>
<td>0.02</td>
<td>PP</td>
<td>expanded PP</td>
<td>OEM Logo</td>
<td>1709-272</td>
</tr>
<tr>
<td>Schulamid 66 GF30</td>
<td>HV Bus Bars</td>
<td>0.72</td>
<td>PA</td>
<td>PA66 GF30</td>
<td>n.a.</td>
<td>1709-269</td>
</tr>
<tr>
<td>Schulamid 66 GF30</td>
<td>Receptacle</td>
<td>0.413</td>
<td>PA</td>
<td>PA66 GF30</td>
<td>TYCO Electronics (TE)</td>
<td>1709-263</td>
</tr>
<tr>
<td>No Alternative</td>
<td>2nd BMS Master ECU</td>
<td>0.134</td>
<td>PPE</td>
<td>PPE+PS HI GF10 FR</td>
<td>OEM Logo</td>
<td>1709-96</td>
</tr>
<tr>
<td>tbd</td>
<td>Insulator / Shield, Upper</td>
<td>0.778</td>
<td>Other Plastics</td>
<td>n.a.</td>
<td></td>
<td>1709-20</td>
</tr>
<tr>
<td>tbd</td>
<td>Second Insulator/Shield, Upper</td>
<td>0.883</td>
<td>Other Plastics</td>
<td>n.a.</td>
<td></td>
<td>1709-24</td>
</tr>
<tr>
<td>Hostacom/Hifax</td>
<td>Front Protection</td>
<td>0.922</td>
<td>PPC</td>
<td>PP GF30-GF50</td>
<td>OEM Logo</td>
<td>1709-274</td>
</tr>
<tr>
<td>Schulatec PPS GF40</td>
<td>Electronic Components Base Plate</td>
<td>2.647</td>
<td>PPS</td>
<td>PPS GF40</td>
<td>Marquardt</td>
<td>1709-271</td>
</tr>
<tr>
<td></td>
<td>Third Insulator/Shield, Upper</td>
<td>0.358</td>
<td>Other Plastics</td>
<td>n.a.</td>
<td></td>
<td>1709-594</td>
</tr>
</tbody>
</table>

Base Plate in PPS GF40 → e.g. Schulatec PPS GF40 black

Source: A2mac1 / Alain Gourjault, LYB
Further examples for plastics within other main e-vehicle parts

- Relay box → 2kg plastics (PA66, PA66GF30, PA66GF30FR, PBTGF30, PC+ABS)
- AC/DC inverter 1 and 2 → 4kg plastics (PBTGF30, PA66, PA66GF30, PPSGF30, PPSGF40)
- Charger → 4 kg plastics (PPAGF15, PA66GF25-35, PA6GF50, PBTGF30, ABS)

9kg + 10 kg additional volume for specific e-vehicle parts

Source: A2mac1 / Alain Gourjault, LYB
Plastic parts in an electric vehicle, example: Jaguar I-Pace

<table>
<thead>
<tr>
<th>Plastic grade</th>
<th>Volume (kg)</th>
<th>APS portfolio</th>
<th>Brand name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPC</td>
<td>106</td>
<td>✓</td>
<td>Hostacom</td>
</tr>
<tr>
<td>PP</td>
<td>8</td>
<td>✓</td>
<td>Moplen</td>
</tr>
<tr>
<td>PA</td>
<td>35</td>
<td>✓</td>
<td>Schulamid PA</td>
</tr>
<tr>
<td>PBT</td>
<td>6</td>
<td>✓</td>
<td>Schuladur A</td>
</tr>
<tr>
<td>ABS</td>
<td>9</td>
<td>✓</td>
<td>Ronfalin ABS</td>
</tr>
<tr>
<td>ABS+PC</td>
<td>16</td>
<td>✓</td>
<td>Schulablend</td>
</tr>
<tr>
<td>ASA</td>
<td>3</td>
<td>✓</td>
<td>Ronfalin ASA</td>
</tr>
<tr>
<td>PC</td>
<td>8</td>
<td>✓</td>
<td>Perlex</td>
</tr>
<tr>
<td>PE</td>
<td>6</td>
<td>✓</td>
<td>Hostalen</td>
</tr>
<tr>
<td>PES</td>
<td>1</td>
<td>X</td>
<td>e.g. Ultrason</td>
</tr>
<tr>
<td>POM</td>
<td>2</td>
<td>✓</td>
<td>Schulaform</td>
</tr>
<tr>
<td>PUR</td>
<td>34</td>
<td>X</td>
<td>e.g. Desmopan</td>
</tr>
<tr>
<td>TPE/TPV</td>
<td>5</td>
<td>✓</td>
<td>Invisiona</td>
</tr>
<tr>
<td>PET</td>
<td>9</td>
<td>✓</td>
<td>Schuladur E</td>
</tr>
<tr>
<td>PMMA</td>
<td>2</td>
<td>✓</td>
<td>Polyman PMMA</td>
</tr>
<tr>
<td>PPE</td>
<td>1</td>
<td>X</td>
<td>e.g. Noryl</td>
</tr>
<tr>
<td>PPS</td>
<td>6</td>
<td>✓</td>
<td>Schulatec PPS</td>
</tr>
<tr>
<td>total</td>
<td>257</td>
<td></td>
<td>14 of 17 grades</td>
</tr>
</tbody>
</table>

Source: A2mac1
PPC volume in the I-Pace is higher than the average EU ICE cars

Source: A2mac1 / Alain Gourjault, LYB
New requirements and new trends within European mobility market

• New requirements will lead to new mobility trends:
 - Autonomous and shared mobility will increase greatly by 2030 (connected cars lead to high amount of electrical component → EMV shielding, flame retardant products)

→ PIT Technology can be a smart solution for the EMV shielding topic
PIT – LyondellBasell technology for cost effective approach

PIT laminate preparation (LyondellBasell Competence Partner):

- **Lacquer** optional
- **Foil** (e.g. aluminium)
- **Adhesive** *(Qestron foil)*
 - From *Qestron PP Compound* made by LyondellBasell

PIT Laminate

- Semi finished good
- To be delivered to molder

Back injection step (Tier1):

- **Thermoplastic**

 Standard process:
 - Injection molding
 - Extrusion,
 - Thermoforming
 - Compression, etc.

 Final part
PIT – Smart approach for hybrid parts in one injection step

Source: Lyondellbasell / trials
PIT – Smart approach for hybrid parts in one injection step

Hostacom PPU 2090L (unreinforced)

- **Flex Modulus (MPa ISO 178)**
 - HC PPU 2090L (unreinforced)
 - 0.2 mm Decor
 - 0.2 mm Aluminium
 - 0.2 mm Steel

Hostacom M2 U01 (PP TD20)

- **Flex Modulus (MPa ISO 178)**
 - HC M2 U01 (PP TD20)
 - 0.2 mm Al
 - 0.2 mm Al
 - 0.4 mm Al
 - 0.4 mm Al
Electromagnetic shielding for batteries and powertrain

Co-operation with Prof. Dr. Norbert Seliger University of Applied Science Rosenheim Laboratory for EMV

Electromagnetic shielding, light weight, design freedom
New requirements and new trends within European mobility market

• New requirements will lead to new mobility trends:
 - The personal mileage will increase by two digit percentage (also people will use cars which do not have a driver license → robo taxis)

→ Robo taxi interiour will be more functional than estatic – use of *Softell* products.
Classical PP Compound compounded blend of PP and impact modifier

Softell is a PP EPR With fine dispersed rubber

Softell®
Name for base polymer
Name for PP compound *Softell TKG 300N* containing *Softell* resin as building block

Source: LyondellBasell /Michael Büdinger
Softell TKG 2039N scratch & mar performance vs. PPTD20 Compound

<table>
<thead>
<tr>
<th></th>
<th>PPTD20 (Black)</th>
<th>Softell TKG 2039N (Black)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scratch Resistance PV 3952 (10N)</td>
<td>DL*</td>
<td>DL*</td>
</tr>
<tr>
<td>Typical automotive leather grain</td>
<td>2,7</td>
<td>0,3</td>
</tr>
<tr>
<td>Fine grain</td>
<td>4,5</td>
<td>0,1</td>
</tr>
<tr>
<td>Mar resistance as per PV 3974 (3N)</td>
<td>DL*</td>
<td>DL*</td>
</tr>
<tr>
<td>Typical automotive leather grain</td>
<td>1,4</td>
<td>0,93</td>
</tr>
<tr>
<td>Fine grain</td>
<td>1,87</td>
<td>0,7</td>
</tr>
<tr>
<td>Gloss level (60 °)</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Typical automotive leather grain</td>
<td>4</td>
<td>2,9</td>
</tr>
<tr>
<td>Fine grain</td>
<td>1,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Values has been measured on VW 216 IP trim part

Source: Lyondellbasell /Michael Büdinger
Softell Textile: A new material for attractive textile appearance

Based on Softell matrix
LyondellBasell has developed a material with „textile look“

Advantages:
- Good surface quality, low gloss
- Good impact / stiffness balance
- Soft touch w/o textile
- Low gloss
- High scratch and UV-resistance
- Low odour and emissions
- Cost & weight saving
- Air Bag deployment behavior

Source: Lyondellbasell /Michael Büdinger
Fabric Wrapped Components replacement: Upper Pillar Trim
Textile Roofliner

- **Softell Textile**

- **Cleanability** – for future car sharing
 - Lower emissions and odor due to the elimination of adhesives

- **EV** – quiet PLEASE!!

- **Sound Dampening** – NVH – PC/ABS?
 - Total system cost reduction
 - BMW A/B Deployment - ductile
 - **No Adhesive = VOC “FREE”**

- Recycling is easier.
 - Airbag shot testing on black and textile upper pillars were positive

Source: Lyondellbasell / Michael Büdinger
European mobility market will face radical change in 2030

• New requirements will lead to new mobility trends:
 - Car sharing will be more focused than an own car (enhanced requirements according plastic parts → long fibre grades, low creep PP like advanced copo PP and PIT (plastic interface technology) for structural parts are suitable

→ Example: Surge tank within hybrid vehicles. Due to higher permanent use this application will be stressed more. Solution: Advanced PP with lower creep leads to reliable parts.
PP glass fiber - known materials for structural parts with a new feature
Deflection vs. time (at elevated temperature) = material creep

Tensile creep test (test longitudinal to fiber direction)

Source: Lyondellbasell /Klaus Klemm
PP glass fiber - known materials for structural parts with a new feature
Deflection vs. time (at elevated temperature) = material creep

Deflection vs. time (at elevated temperature) = material creep

Source: LyondellBasell /Klaus Klemm

Lower creep = longer life
European mobility market will face radical change in 2030

There are high investments necessary for the e-vehicle infrastructure
• Charging stations with fast loading system
• At home wall boxes
• Charging plugs
Smart solutions for new requirements

POLYFLAM® RMMK 125
SCHULADUR® A MV14 SHI FR1

PA/ABS, unreinforced, V-0 @ 0,8 mm, high impact
PBT, unreinforced, V-0 @ 0,8 mm, high impact

Wall box / company ABL sursum
Charging plug / company Phoenix Contact

Source:
Lyondellbasell / Phoenix Contact / ABL Sursum
Summary

- Requirements and challenges to the automotive industry
- Automotive evolution and scenario
- Radical change within European mobility market
- Plastic parts in an electrical vehicle, example: Jaguar I-Pace
- Smart materials fits new requirements
Thank you for your attention!
Before using a product sold by a company of the LyondellBasell family of companies ("LyondellBasell"), users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. LyondellBasell MAKES NO WARRANTY, EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE) OTHER THAN AS AGREED TO BY LyondellBasell IN THE PRODUCT SALE CONTRACT.

LyondellBasell prohibits or restricts the use of its products in certain applications. For further information on restrictions or prohibitions of use, please contact a LyondellBasell representative.

Users should review the applicable Safety Data Sheet before handling the product.

Mention products that are stated in this powerpoint are a trademark owned and/or used by the LyondellBasell family of companies.